ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p1modz1 GIF version

Theorem p1modz1 11734
Description: If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.)
Assertion
Ref Expression
p1modz1 ((𝑀𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1)

Proof of Theorem p1modz1
StepHypRef Expression
1 dvdszrcl 11732 . . 3 (𝑀𝐴 → (𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ))
2 0red 7900 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 0 ∈ ℝ)
3 1red 7914 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 1 ∈ ℝ)
4 zre 9195 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54adantr 274 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 𝑀 ∈ ℝ)
62, 3, 53jca 1167 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ))
7 0lt1 8025 . . . . . . . . . . . . . . 15 0 < 1
87a1i 9 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 0 < 1)
98anim1i 338 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (0 < 1 ∧ 1 < 𝑀))
10 lttr 7972 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑀) → 0 < 𝑀))
116, 9, 10sylc 62 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 0 < 𝑀)
1211ex 114 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (1 < 𝑀 → 0 < 𝑀))
13 elnnz 9201 . . . . . . . . . . . 12 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
1413simplbi2 383 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (0 < 𝑀𝑀 ∈ ℕ))
1512, 14syld 45 . . . . . . . . . 10 (𝑀 ∈ ℤ → (1 < 𝑀𝑀 ∈ ℕ))
1615adantr 274 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝑀𝑀 ∈ ℕ))
1716imp 123 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 𝑀 ∈ ℕ)
18 dvdsmod0 11733 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑀𝐴) → (𝐴 mod 𝑀) = 0)
1917, 18sylan 281 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ 𝑀𝐴) → (𝐴 mod 𝑀) = 0)
2019ex 114 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (𝑀𝐴 → (𝐴 mod 𝑀) = 0))
21 oveq1 5849 . . . . . . . . . . 11 ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = (0 + 1))
22 0p1e1 8971 . . . . . . . . . . 11 (0 + 1) = 1
2321, 22eqtrdi 2215 . . . . . . . . . 10 ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = 1)
2423oveq1d 5857 . . . . . . . . 9 ((𝐴 mod 𝑀) = 0 → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀))
2524adantl 275 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀))
26 zq 9564 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
2726ad3antlr 485 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → 𝐴 ∈ ℚ)
28 1z 9217 . . . . . . . . . 10 1 ∈ ℤ
29 zq 9564 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
3028, 29mp1i 10 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → 1 ∈ ℚ)
31 zq 9564 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
3231ad3antrrr 484 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → 𝑀 ∈ ℚ)
3311ad4ant13 505 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → 0 < 𝑀)
34 modqaddmod 10298 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 1 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
3527, 30, 32, 33, 34syl22anc 1229 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
3631adantr 274 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑀 ∈ ℚ)
37 q1mod 10291 . . . . . . . . . 10 ((𝑀 ∈ ℚ ∧ 1 < 𝑀) → (1 mod 𝑀) = 1)
3836, 37sylan 281 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (1 mod 𝑀) = 1)
3938adantr 274 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (1 mod 𝑀) = 1)
4025, 35, 393eqtr3d 2206 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → ((𝐴 + 1) mod 𝑀) = 1)
4140ex 114 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → ((𝐴 mod 𝑀) = 0 → ((𝐴 + 1) mod 𝑀) = 1))
4220, 41syld 45 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (𝑀𝐴 → ((𝐴 + 1) mod 𝑀) = 1))
4342ex 114 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝑀 → (𝑀𝐴 → ((𝐴 + 1) mod 𝑀) = 1)))
4443com23 78 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1)))
451, 44mpcom 36 . 2 (𝑀𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1))
4645imp 123 1 ((𝑀𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   < clt 7933  cn 8857  cz 9191  cq 9557   mod cmo 10257  cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-q 9558  df-rp 9590  df-fl 10205  df-mod 10258  df-dvds 11728
This theorem is referenced by:  lgslem4  13544
  Copyright terms: Public domain W3C validator