Proof of Theorem p1modz1
| Step | Hyp | Ref
| Expression |
| 1 | | dvdszrcl 11974 |
. . 3
⊢ (𝑀 ∥ 𝐴 → (𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ)) |
| 2 | | 0red 8044 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → 0 ∈
ℝ) |
| 3 | | 1red 8058 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → 1 ∈
ℝ) |
| 4 | | zre 9347 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
| 5 | 4 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → 𝑀 ∈ ℝ) |
| 6 | 2, 3, 5 | 3jca 1179 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → (0 ∈ ℝ
∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ)) |
| 7 | | 0lt1 8170 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
| 8 | 7 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℤ → 0 <
1) |
| 9 | 8 | anim1i 340 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → (0 < 1 ∧ 1
< 𝑀)) |
| 10 | | lttr 8117 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 < 1 ∧ 1
< 𝑀) → 0 < 𝑀)) |
| 11 | 6, 9, 10 | sylc 62 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 1 <
𝑀) → 0 < 𝑀) |
| 12 | 11 | ex 115 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (1 <
𝑀 → 0 < 𝑀)) |
| 13 | | elnnz 9353 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 <
𝑀)) |
| 14 | 13 | simplbi2 385 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → (0 <
𝑀 → 𝑀 ∈ ℕ)) |
| 15 | 12, 14 | syld 45 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → (1 <
𝑀 → 𝑀 ∈ ℕ)) |
| 16 | 15 | adantr 276 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 <
𝑀 → 𝑀 ∈ ℕ)) |
| 17 | 16 | imp 124 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → 𝑀 ∈ ℕ) |
| 18 | | dvdsmod0 11975 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝐴) → (𝐴 mod 𝑀) = 0) |
| 19 | 17, 18 | sylan 283 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ 𝑀 ∥ 𝐴) → (𝐴 mod 𝑀) = 0) |
| 20 | 19 | ex 115 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → (𝑀 ∥ 𝐴 → (𝐴 mod 𝑀) = 0)) |
| 21 | | oveq1 5932 |
. . . . . . . . . . 11
⊢ ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = (0 + 1)) |
| 22 | | 0p1e1 9121 |
. . . . . . . . . . 11
⊢ (0 + 1) =
1 |
| 23 | 21, 22 | eqtrdi 2245 |
. . . . . . . . . 10
⊢ ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = 1) |
| 24 | 23 | oveq1d 5940 |
. . . . . . . . 9
⊢ ((𝐴 mod 𝑀) = 0 → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀)) |
| 25 | 24 | adantl 277 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀)) |
| 26 | | zq 9717 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℚ) |
| 27 | 26 | ad3antlr 493 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → 𝐴 ∈ ℚ) |
| 28 | | 1z 9369 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
| 29 | | zq 9717 |
. . . . . . . . . 10
⊢ (1 ∈
ℤ → 1 ∈ ℚ) |
| 30 | 28, 29 | mp1i 10 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → 1 ∈
ℚ) |
| 31 | | zq 9717 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℚ) |
| 32 | 31 | ad3antrrr 492 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → 𝑀 ∈ ℚ) |
| 33 | 11 | ad4ant13 513 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → 0 < 𝑀) |
| 34 | | modqaddmod 10472 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℚ ∧ 1 ∈
ℚ) ∧ (𝑀 ∈
ℚ ∧ 0 < 𝑀))
→ (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀)) |
| 35 | 27, 30, 32, 33, 34 | syl22anc 1250 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀)) |
| 36 | 31 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑀 ∈
ℚ) |
| 37 | | q1mod 10465 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℚ ∧ 1 <
𝑀) → (1 mod 𝑀) = 1) |
| 38 | 36, 37 | sylan 283 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → (1 mod 𝑀) = 1) |
| 39 | 38 | adantr 276 |
. . . . . . . 8
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → (1 mod 𝑀) = 1) |
| 40 | 25, 35, 39 | 3eqtr3d 2237 |
. . . . . . 7
⊢ ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) ∧ (𝐴 mod 𝑀) = 0) → ((𝐴 + 1) mod 𝑀) = 1) |
| 41 | 40 | ex 115 |
. . . . . 6
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → ((𝐴 mod 𝑀) = 0 → ((𝐴 + 1) mod 𝑀) = 1)) |
| 42 | 20, 41 | syld 45 |
. . . . 5
⊢ (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 <
𝑀) → (𝑀 ∥ 𝐴 → ((𝐴 + 1) mod 𝑀) = 1)) |
| 43 | 42 | ex 115 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 <
𝑀 → (𝑀 ∥ 𝐴 → ((𝐴 + 1) mod 𝑀) = 1))) |
| 44 | 43 | com23 78 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1))) |
| 45 | 1, 44 | mpcom 36 |
. 2
⊢ (𝑀 ∥ 𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1)) |
| 46 | 45 | imp 124 |
1
⊢ ((𝑀 ∥ 𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1) |