ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p1modz1 GIF version

Theorem p1modz1 11803
Description: If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.)
Assertion
Ref Expression
p1modz1 ((𝑀𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1)

Proof of Theorem p1modz1
StepHypRef Expression
1 dvdszrcl 11801 . . 3 (𝑀𝐴 → (𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ))
2 0red 7960 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 0 ∈ ℝ)
3 1red 7974 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 1 ∈ ℝ)
4 zre 9259 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54adantr 276 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 𝑀 ∈ ℝ)
62, 3, 53jca 1177 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ))
7 0lt1 8086 . . . . . . . . . . . . . . 15 0 < 1
87a1i 9 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 0 < 1)
98anim1i 340 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → (0 < 1 ∧ 1 < 𝑀))
10 lttr 8033 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝑀) → 0 < 𝑀))
116, 9, 10sylc 62 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 1 < 𝑀) → 0 < 𝑀)
1211ex 115 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (1 < 𝑀 → 0 < 𝑀))
13 elnnz 9265 . . . . . . . . . . . 12 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
1413simplbi2 385 . . . . . . . . . . 11 (𝑀 ∈ ℤ → (0 < 𝑀𝑀 ∈ ℕ))
1512, 14syld 45 . . . . . . . . . 10 (𝑀 ∈ ℤ → (1 < 𝑀𝑀 ∈ ℕ))
1615adantr 276 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝑀𝑀 ∈ ℕ))
1716imp 124 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → 𝑀 ∈ ℕ)
18 dvdsmod0 11802 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑀𝐴) → (𝐴 mod 𝑀) = 0)
1917, 18sylan 283 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ 𝑀𝐴) → (𝐴 mod 𝑀) = 0)
2019ex 115 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (𝑀𝐴 → (𝐴 mod 𝑀) = 0))
21 oveq1 5884 . . . . . . . . . . 11 ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = (0 + 1))
22 0p1e1 9035 . . . . . . . . . . 11 (0 + 1) = 1
2321, 22eqtrdi 2226 . . . . . . . . . 10 ((𝐴 mod 𝑀) = 0 → ((𝐴 mod 𝑀) + 1) = 1)
2423oveq1d 5892 . . . . . . . . 9 ((𝐴 mod 𝑀) = 0 → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀))
2524adantl 277 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = (1 mod 𝑀))
26 zq 9628 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
2726ad3antlr 493 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → 𝐴 ∈ ℚ)
28 1z 9281 . . . . . . . . . 10 1 ∈ ℤ
29 zq 9628 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
3028, 29mp1i 10 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → 1 ∈ ℚ)
31 zq 9628 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
3231ad3antrrr 492 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → 𝑀 ∈ ℚ)
3311ad4ant13 513 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → 0 < 𝑀)
34 modqaddmod 10365 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 1 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
3527, 30, 32, 33, 34syl22anc 1239 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (((𝐴 mod 𝑀) + 1) mod 𝑀) = ((𝐴 + 1) mod 𝑀))
3631adantr 276 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → 𝑀 ∈ ℚ)
37 q1mod 10358 . . . . . . . . . 10 ((𝑀 ∈ ℚ ∧ 1 < 𝑀) → (1 mod 𝑀) = 1)
3836, 37sylan 283 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (1 mod 𝑀) = 1)
3938adantr 276 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → (1 mod 𝑀) = 1)
4025, 35, 393eqtr3d 2218 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) ∧ (𝐴 mod 𝑀) = 0) → ((𝐴 + 1) mod 𝑀) = 1)
4140ex 115 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → ((𝐴 mod 𝑀) = 0 → ((𝐴 + 1) mod 𝑀) = 1))
4220, 41syld 45 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ 1 < 𝑀) → (𝑀𝐴 → ((𝐴 + 1) mod 𝑀) = 1))
4342ex 115 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 < 𝑀 → (𝑀𝐴 → ((𝐴 + 1) mod 𝑀) = 1)))
4443com23 78 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1)))
451, 44mpcom 36 . 2 (𝑀𝐴 → (1 < 𝑀 → ((𝐴 + 1) mod 𝑀) = 1))
4645imp 124 1 ((𝑀𝐴 ∧ 1 < 𝑀) → ((𝐴 + 1) mod 𝑀) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4005  (class class class)co 5877  cr 7812  0cc0 7813  1c1 7814   + caddc 7816   < clt 7994  cn 8921  cz 9255  cq 9621   mod cmo 10324  cdvds 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-n0 9179  df-z 9256  df-q 9622  df-rp 9656  df-fl 10272  df-mod 10325  df-dvds 11797
This theorem is referenced by:  lgslem4  14443
  Copyright terms: Public domain W3C validator