ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0dir GIF version

Theorem mulgnn0dir 13684
Description: Sum of group multiples, generalized to 0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0dir ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgnn0dir
StepHypRef Expression
1 mndsgrp 13449 . . . . . 6 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
21adantr 276 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝐺 ∈ Smgrp)
32ad2antrr 488 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝐺 ∈ Smgrp)
4 simplr 528 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ)
5 simpr 110 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
6 simpr3 1029 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑋𝐵)
76ad2antrr 488 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
8 mulgnndir.b . . . . 5 𝐵 = (Base‘𝐺)
9 mulgnndir.t . . . . 5 · = (.g𝐺)
10 mulgnndir.p . . . . 5 + = (+g𝐺)
118, 9, 10mulgnndir 13683 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
123, 4, 5, 7, 11syl13anc 1273 . . 3 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
13 simpll 527 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝐺 ∈ Mnd)
14 simpr1 1027 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑀 ∈ ℕ0)
1514adantr 276 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑀 ∈ ℕ0)
16 simplr3 1065 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑋𝐵)
178, 9mulgnn0cl 13670 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
1813, 15, 16, 17syl3anc 1271 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 · 𝑋) ∈ 𝐵)
19 eqid 2229 . . . . . . 7 (0g𝐺) = (0g𝐺)
208, 10, 19mndrid 13464 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + (0g𝐺)) = (𝑀 · 𝑋))
2113, 18, 20syl2anc 411 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 · 𝑋) + (0g𝐺)) = (𝑀 · 𝑋))
22 simpr 110 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑁 = 0)
2322oveq1d 6015 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
248, 19, 9mulg0 13657 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2516, 24syl 14 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐺))
2623, 25eqtrd 2262 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0g𝐺))
2726oveq2d 6016 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((𝑀 · 𝑋) + (0g𝐺)))
2822oveq2d 6016 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 + 𝑁) = (𝑀 + 0))
2915nn0cnd 9420 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑀 ∈ ℂ)
3029addridd 8291 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 + 0) = 𝑀)
3128, 30eqtrd 2262 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 + 𝑁) = 𝑀)
3231oveq1d 6015 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = (𝑀 · 𝑋))
3321, 27, 323eqtr4rd 2273 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
3433adantlr 477 . . 3 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
35 simpr2 1028 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑁 ∈ ℕ0)
36 elnn0 9367 . . . . 5 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3735, 36sylib 122 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3837adantr 276 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3912, 34, 38mpjaodan 803 . 2 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
40 simpll 527 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝐺 ∈ Mnd)
41 simplr2 1064 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑁 ∈ ℕ0)
42 simplr3 1065 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑋𝐵)
438, 9mulgnn0cl 13670 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
4440, 41, 42, 43syl3anc 1271 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑁 · 𝑋) ∈ 𝐵)
458, 10, 19mndlid 13463 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((0g𝐺) + (𝑁 · 𝑋)) = (𝑁 · 𝑋))
4640, 44, 45syl2anc 411 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((0g𝐺) + (𝑁 · 𝑋)) = (𝑁 · 𝑋))
47 simpr 110 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑀 = 0)
4847oveq1d 6015 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0 · 𝑋))
4942, 24syl 14 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (0 · 𝑋) = (0g𝐺))
5048, 49eqtrd 2262 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0g𝐺))
5150oveq1d 6015 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((0g𝐺) + (𝑁 · 𝑋)))
5247oveq1d 6015 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 + 𝑁) = (0 + 𝑁))
5341nn0cnd 9420 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑁 ∈ ℂ)
5453addlidd 8292 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (0 + 𝑁) = 𝑁)
5552, 54eqtrd 2262 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 + 𝑁) = 𝑁)
5655oveq1d 6015 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((𝑀 + 𝑁) · 𝑋) = (𝑁 · 𝑋))
5746, 51, 563eqtr4rd 2273 . 2 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
58 elnn0 9367 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5914, 58sylib 122 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
6039, 57, 59mpjaodan 803 1 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713  w3a 1002   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  0cc0 7995   + caddc 7998  cn 9106  0cn0 9365  Basecbs 13027  +gcplusg 13105  0gc0g 13284  Smgrpcsgrp 13429  Mndcmnd 13444  .gcmg 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-minusg 13532  df-mulg 13652
This theorem is referenced by:  mulgdirlem  13685
  Copyright terms: Public domain W3C validator