Proof of Theorem mulgnn0dir
Step | Hyp | Ref
| Expression |
1 | | mndsgrp 12687 |
. . . . . 6
⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) |
2 | 1 | adantr 276 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → 𝐺 ∈ Smgrp) |
3 | 2 | ad2antrr 488 |
. . . 4
⊢ ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝐺 ∈ Smgrp) |
4 | | simplr 528 |
. . . 4
⊢ ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑀 ∈
ℕ) |
5 | | simpr 110 |
. . . 4
⊢ ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ) |
6 | | simpr3 1005 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → 𝑋 ∈ 𝐵) |
7 | 6 | ad2antrr 488 |
. . . 4
⊢ ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐵) |
8 | | mulgnndir.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
9 | | mulgnndir.t |
. . . . 5
⊢ · =
(.g‘𝐺) |
10 | | mulgnndir.p |
. . . . 5
⊢ + =
(+g‘𝐺) |
11 | 8, 9, 10 | mulgnndir 12870 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |
12 | 3, 4, 5, 7, 11 | syl13anc 1240 |
. . 3
⊢ ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |
13 | | simpll 527 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → 𝐺 ∈ Mnd) |
14 | | simpr1 1003 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → 𝑀 ∈
ℕ0) |
15 | 14 | adantr 276 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → 𝑀 ∈
ℕ0) |
16 | | simplr3 1041 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → 𝑋 ∈ 𝐵) |
17 | 8, 9 | mulgnn0cl 12858 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) ∈ 𝐵) |
18 | 13, 15, 16, 17 | syl3anc 1238 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → (𝑀 · 𝑋) ∈ 𝐵) |
19 | | eqid 2175 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
20 | 8, 10, 19 | mndrid 12702 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + (0g‘𝐺)) = (𝑀 · 𝑋)) |
21 | 13, 18, 20 | syl2anc 411 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → ((𝑀 · 𝑋) + (0g‘𝐺)) = (𝑀 · 𝑋)) |
22 | | simpr 110 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → 𝑁 = 0) |
23 | 22 | oveq1d 5880 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋)) |
24 | 8, 19, 9 | mulg0 12847 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
25 | 16, 24 | syl 14 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g‘𝐺)) |
26 | 23, 25 | eqtrd 2208 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0g‘𝐺)) |
27 | 26 | oveq2d 5881 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((𝑀 · 𝑋) + (0g‘𝐺))) |
28 | 22 | oveq2d 5881 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → (𝑀 + 𝑁) = (𝑀 + 0)) |
29 | 15 | nn0cnd 9202 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → 𝑀 ∈ ℂ) |
30 | 29 | addid1d 8080 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → (𝑀 + 0) = 𝑀) |
31 | 28, 30 | eqtrd 2208 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → (𝑀 + 𝑁) = 𝑀) |
32 | 31 | oveq1d 5880 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = (𝑀 · 𝑋)) |
33 | 21, 27, 32 | 3eqtr4rd 2219 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |
34 | 33 | adantlr 477 |
. . 3
⊢ ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |
35 | | simpr2 1004 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → 𝑁 ∈
ℕ0) |
36 | | elnn0 9149 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
37 | 35, 36 | sylib 122 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
38 | 37 | adantr 276 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
39 | 12, 34, 38 | mpjaodan 798 |
. 2
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |
40 | | simpll 527 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → 𝐺 ∈ Mnd) |
41 | | simplr2 1040 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → 𝑁 ∈
ℕ0) |
42 | | simplr3 1041 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → 𝑋 ∈ 𝐵) |
43 | 8, 9 | mulgnn0cl 12858 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
44 | 40, 41, 42, 43 | syl3anc 1238 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → (𝑁 · 𝑋) ∈ 𝐵) |
45 | 8, 10, 19 | mndlid 12701 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((0g‘𝐺) + (𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
46 | 40, 44, 45 | syl2anc 411 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) →
((0g‘𝐺)
+ (𝑁 · 𝑋)) = (𝑁 · 𝑋)) |
47 | | simpr 110 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → 𝑀 = 0) |
48 | 47 | oveq1d 5880 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0 · 𝑋)) |
49 | 42, 24 | syl 14 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → (0 · 𝑋) = (0g‘𝐺)) |
50 | 48, 49 | eqtrd 2208 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0g‘𝐺)) |
51 | 50 | oveq1d 5880 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((0g‘𝐺) + (𝑁 · 𝑋))) |
52 | 47 | oveq1d 5880 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 + 𝑁) = (0 + 𝑁)) |
53 | 41 | nn0cnd 9202 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → 𝑁 ∈ ℂ) |
54 | 53 | addid2d 8081 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → (0 + 𝑁) = 𝑁) |
55 | 52, 54 | eqtrd 2208 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → (𝑀 + 𝑁) = 𝑁) |
56 | 55 | oveq1d 5880 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → ((𝑀 + 𝑁) · 𝑋) = (𝑁 · 𝑋)) |
57 | 46, 51, 56 | 3eqtr4rd 2219 |
. 2
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |
58 | | elnn0 9149 |
. . 3
⊢ (𝑀 ∈ ℕ0
↔ (𝑀 ∈ ℕ
∨ 𝑀 =
0)) |
59 | 14, 58 | sylib 122 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0)) |
60 | 39, 57, 59 | mpjaodan 798 |
1
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) |