Step | Hyp | Ref
| Expression |
1 | | resqrexlemdecn.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | 1 | nnzd 9312 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
3 | 2 | peano2zd 9316 |
. . 3
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
4 | | resqrexlemdecn.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) |
5 | 4 | nnzd 9312 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
6 | | resqrexlemdecn.nm |
. . . 4
⊢ (𝜑 → 𝑁 < 𝑀) |
7 | | nnltp1le 9251 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 < 𝑀 ↔ (𝑁 + 1) ≤ 𝑀)) |
8 | 1, 4, 7 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (𝑁 < 𝑀 ↔ (𝑁 + 1) ≤ 𝑀)) |
9 | 6, 8 | mpbid 146 |
. . 3
⊢ (𝜑 → (𝑁 + 1) ≤ 𝑀) |
10 | | fveq2 5486 |
. . . . . 6
⊢ (𝑤 = (𝑁 + 1) → (𝐹‘𝑤) = (𝐹‘(𝑁 + 1))) |
11 | 10 | breq1d 3992 |
. . . . 5
⊢ (𝑤 = (𝑁 + 1) → ((𝐹‘𝑤) < (𝐹‘𝑁) ↔ (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁))) |
12 | 11 | imbi2d 229 |
. . . 4
⊢ (𝑤 = (𝑁 + 1) → ((𝜑 → (𝐹‘𝑤) < (𝐹‘𝑁)) ↔ (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)))) |
13 | | fveq2 5486 |
. . . . . 6
⊢ (𝑤 = 𝑘 → (𝐹‘𝑤) = (𝐹‘𝑘)) |
14 | 13 | breq1d 3992 |
. . . . 5
⊢ (𝑤 = 𝑘 → ((𝐹‘𝑤) < (𝐹‘𝑁) ↔ (𝐹‘𝑘) < (𝐹‘𝑁))) |
15 | 14 | imbi2d 229 |
. . . 4
⊢ (𝑤 = 𝑘 → ((𝜑 → (𝐹‘𝑤) < (𝐹‘𝑁)) ↔ (𝜑 → (𝐹‘𝑘) < (𝐹‘𝑁)))) |
16 | | fveq2 5486 |
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → (𝐹‘𝑤) = (𝐹‘(𝑘 + 1))) |
17 | 16 | breq1d 3992 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → ((𝐹‘𝑤) < (𝐹‘𝑁) ↔ (𝐹‘(𝑘 + 1)) < (𝐹‘𝑁))) |
18 | 17 | imbi2d 229 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐹‘𝑤) < (𝐹‘𝑁)) ↔ (𝜑 → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑁)))) |
19 | | fveq2 5486 |
. . . . . 6
⊢ (𝑤 = 𝑀 → (𝐹‘𝑤) = (𝐹‘𝑀)) |
20 | 19 | breq1d 3992 |
. . . . 5
⊢ (𝑤 = 𝑀 → ((𝐹‘𝑤) < (𝐹‘𝑁) ↔ (𝐹‘𝑀) < (𝐹‘𝑁))) |
21 | 20 | imbi2d 229 |
. . . 4
⊢ (𝑤 = 𝑀 → ((𝜑 → (𝐹‘𝑤) < (𝐹‘𝑁)) ↔ (𝜑 → (𝐹‘𝑀) < (𝐹‘𝑁)))) |
22 | | resqrexlemex.seq |
. . . . . . 7
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
23 | | resqrexlemex.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
24 | | resqrexlemex.agt0 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 𝐴) |
25 | 22, 23, 24 | resqrexlemdec 10953 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)) |
26 | 1, 25 | mpdan 418 |
. . . . 5
⊢ (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)) |
27 | 26 | a1i 9 |
. . . 4
⊢ ((𝑁 + 1) ∈ ℤ →
(𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁))) |
28 | 22, 23, 24 | resqrexlemf 10949 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
29 | 28 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → 𝐹:ℕ⟶ℝ+) |
30 | | simplr2 1030 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → 𝑘 ∈ ℤ) |
31 | | 1red 7914 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → 1 ∈ ℝ) |
32 | 3 | ad2antrr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝑁 + 1) ∈ ℤ) |
33 | 32 | zred 9313 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝑁 + 1) ∈ ℝ) |
34 | 30 | zred 9313 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → 𝑘 ∈ ℝ) |
35 | 1 | nnred 8870 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℝ) |
36 | 1 | nngt0d 8901 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 < 𝑁) |
37 | | 0re 7899 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ |
38 | | ltle 7986 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℝ ∧ 𝑁
∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁)) |
39 | 37, 38 | mpan 421 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℝ → (0 <
𝑁 → 0 ≤ 𝑁)) |
40 | 35, 36, 39 | sylc 62 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≤ 𝑁) |
41 | | 1red 7914 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℝ) |
42 | 41, 35 | addge02d 8432 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0 ≤ 𝑁 ↔ 1 ≤ (𝑁 + 1))) |
43 | 40, 42 | mpbid 146 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ≤ (𝑁 + 1)) |
44 | 43 | ad2antrr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → 1 ≤ (𝑁 + 1)) |
45 | | simplr3 1031 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝑁 + 1) ≤ 𝑘) |
46 | 31, 33, 34, 44, 45 | letrd 8022 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → 1 ≤ 𝑘) |
47 | | elnnz1 9214 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤
𝑘)) |
48 | 30, 46, 47 | sylanbrc 414 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → 𝑘 ∈ ℕ) |
49 | 48 | peano2nnd 8872 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝑘 + 1) ∈ ℕ) |
50 | 29, 49 | ffvelrnd 5621 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝐹‘(𝑘 + 1)) ∈
ℝ+) |
51 | 50 | rpred 9632 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ) |
52 | 29, 48 | ffvelrnd 5621 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝐹‘𝑘) ∈
ℝ+) |
53 | 52 | rpred 9632 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝐹‘𝑘) ∈ ℝ) |
54 | 1 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → 𝑁 ∈ ℕ) |
55 | 29, 54 | ffvelrnd 5621 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝐹‘𝑁) ∈
ℝ+) |
56 | 55 | rpred 9632 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝐹‘𝑁) ∈ ℝ) |
57 | | simpll 519 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → 𝜑) |
58 | 22, 23, 24 | resqrexlemdec 10953 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑘)) |
59 | 57, 48, 58 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑘)) |
60 | | simpr 109 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝐹‘𝑘) < (𝐹‘𝑁)) |
61 | 51, 53, 56, 59, 60 | lttrd 8024 |
. . . . . . 7
⊢ (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑁)) |
62 | 61 | ex 114 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) → ((𝐹‘𝑘) < (𝐹‘𝑁) → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑁))) |
63 | 62 | expcom 115 |
. . . . 5
⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘) → (𝜑 → ((𝐹‘𝑘) < (𝐹‘𝑁) → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑁)))) |
64 | 63 | a2d 26 |
. . . 4
⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘) → ((𝜑 → (𝐹‘𝑘) < (𝐹‘𝑁)) → (𝜑 → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑁)))) |
65 | 12, 15, 18, 21, 27, 64 | uzind 9302 |
. . 3
⊢ (((𝑁 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑀) → (𝜑 → (𝐹‘𝑀) < (𝐹‘𝑁))) |
66 | 3, 5, 9, 65 | syl3anc 1228 |
. 2
⊢ (𝜑 → (𝜑 → (𝐹‘𝑀) < (𝐹‘𝑁))) |
67 | 66 | pm2.43i 49 |
1
⊢ (𝜑 → (𝐹‘𝑀) < (𝐹‘𝑁)) |