ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemdecn GIF version

Theorem resqrexlemdecn 11039
Description: Lemma for resqrex 11053. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemdecn.n (𝜑𝑁 ∈ ℕ)
resqrexlemdecn.m (𝜑𝑀 ∈ ℕ)
resqrexlemdecn.nm (𝜑𝑁 < 𝑀)
Assertion
Ref Expression
resqrexlemdecn (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemdecn
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemdecn.n . . . . 5 (𝜑𝑁 ∈ ℕ)
21nnzd 9392 . . . 4 (𝜑𝑁 ∈ ℤ)
32peano2zd 9396 . . 3 (𝜑 → (𝑁 + 1) ∈ ℤ)
4 resqrexlemdecn.m . . . 4 (𝜑𝑀 ∈ ℕ)
54nnzd 9392 . . 3 (𝜑𝑀 ∈ ℤ)
6 resqrexlemdecn.nm . . . 4 (𝜑𝑁 < 𝑀)
7 nnltp1le 9331 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 < 𝑀 ↔ (𝑁 + 1) ≤ 𝑀))
81, 4, 7syl2anc 411 . . . 4 (𝜑 → (𝑁 < 𝑀 ↔ (𝑁 + 1) ≤ 𝑀))
96, 8mpbid 147 . . 3 (𝜑 → (𝑁 + 1) ≤ 𝑀)
10 fveq2 5530 . . . . . 6 (𝑤 = (𝑁 + 1) → (𝐹𝑤) = (𝐹‘(𝑁 + 1)))
1110breq1d 4028 . . . . 5 (𝑤 = (𝑁 + 1) → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹‘(𝑁 + 1)) < (𝐹𝑁)))
1211imbi2d 230 . . . 4 (𝑤 = (𝑁 + 1) → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))))
13 fveq2 5530 . . . . . 6 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1413breq1d 4028 . . . . 5 (𝑤 = 𝑘 → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹𝑘) < (𝐹𝑁)))
1514imbi2d 230 . . . 4 (𝑤 = 𝑘 → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹𝑘) < (𝐹𝑁))))
16 fveq2 5530 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1716breq1d 4028 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹‘(𝑘 + 1)) < (𝐹𝑁)))
1817imbi2d 230 . . . 4 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
19 fveq2 5530 . . . . . 6 (𝑤 = 𝑀 → (𝐹𝑤) = (𝐹𝑀))
2019breq1d 4028 . . . . 5 (𝑤 = 𝑀 → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹𝑀) < (𝐹𝑁)))
2120imbi2d 230 . . . 4 (𝑤 = 𝑀 → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹𝑀) < (𝐹𝑁))))
22 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
23 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
24 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
2522, 23, 24resqrexlemdec 11038 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
261, 25mpdan 421 . . . . 5 (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
2726a1i 9 . . . 4 ((𝑁 + 1) ∈ ℤ → (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁)))
2822, 23, 24resqrexlemf 11034 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ+)
2928ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝐹:ℕ⟶ℝ+)
30 simplr2 1042 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℤ)
31 1red 7990 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ∈ ℝ)
323ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ∈ ℤ)
3332zred 9393 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ∈ ℝ)
3430zred 9393 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℝ)
351nnred 8950 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
361nngt0d 8981 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑁)
37 0re 7975 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
38 ltle 8063 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
3937, 38mpan 424 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → (0 < 𝑁 → 0 ≤ 𝑁))
4035, 36, 39sylc 62 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝑁)
41 1red 7990 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
4241, 35addge02d 8509 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ 𝑁 ↔ 1 ≤ (𝑁 + 1)))
4340, 42mpbid 147 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (𝑁 + 1))
4443ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ≤ (𝑁 + 1))
45 simplr3 1043 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ≤ 𝑘)
4631, 33, 34, 44, 45letrd 8099 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ≤ 𝑘)
47 elnnz1 9294 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
4830, 46, 47sylanbrc 417 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℕ)
4948peano2nnd 8952 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑘 + 1) ∈ ℕ)
5029, 49ffvelcdmd 5668 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ+)
5150rpred 9714 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
5229, 48ffvelcdmd 5668 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) ∈ ℝ+)
5352rpred 9714 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) ∈ ℝ)
541ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑁 ∈ ℕ)
5529, 54ffvelcdmd 5668 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑁) ∈ ℝ+)
5655rpred 9714 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑁) ∈ ℝ)
57 simpll 527 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝜑)
5822, 23, 24resqrexlemdec 11038 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) < (𝐹𝑘))
5957, 48, 58syl2anc 411 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) < (𝐹𝑘))
60 simpr 110 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) < (𝐹𝑁))
6151, 53, 56, 59, 60lttrd 8101 . . . . . . 7 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))
6261ex 115 . . . . . 6 ((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) → ((𝐹𝑘) < (𝐹𝑁) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁)))
6362expcom 116 . . . . 5 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘) → (𝜑 → ((𝐹𝑘) < (𝐹𝑁) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
6463a2d 26 . . . 4 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘) → ((𝜑 → (𝐹𝑘) < (𝐹𝑁)) → (𝜑 → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
6512, 15, 18, 21, 27, 64uzind 9382 . . 3 (((𝑁 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑀) → (𝜑 → (𝐹𝑀) < (𝐹𝑁)))
663, 5, 9, 65syl3anc 1249 . 2 (𝜑 → (𝜑 → (𝐹𝑀) < (𝐹𝑁)))
6766pm2.43i 49 1 (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  {csn 3607   class class class wbr 4018   × cxp 4639  wf 5227  cfv 5231  (class class class)co 5891  cmpo 5893  cr 7828  0cc0 7829  1c1 7830   + caddc 7832   < clt 8010  cle 8011   / cdiv 8647  cn 8937  2c2 8988  cz 9271  +crp 9671  seqcseq 10463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-n0 9195  df-z 9272  df-uz 9547  df-rp 9672  df-seqfrec 10464  df-exp 10538
This theorem is referenced by:  resqrexlemnm  11045  resqrexlemcvg  11046  resqrexlemoverl  11048  resqrexlemglsq  11049
  Copyright terms: Public domain W3C validator