ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemdecn GIF version

Theorem resqrexlemdecn 10954
Description: Lemma for resqrex 10968. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemdecn.n (𝜑𝑁 ∈ ℕ)
resqrexlemdecn.m (𝜑𝑀 ∈ ℕ)
resqrexlemdecn.nm (𝜑𝑁 < 𝑀)
Assertion
Ref Expression
resqrexlemdecn (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemdecn
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemdecn.n . . . . 5 (𝜑𝑁 ∈ ℕ)
21nnzd 9312 . . . 4 (𝜑𝑁 ∈ ℤ)
32peano2zd 9316 . . 3 (𝜑 → (𝑁 + 1) ∈ ℤ)
4 resqrexlemdecn.m . . . 4 (𝜑𝑀 ∈ ℕ)
54nnzd 9312 . . 3 (𝜑𝑀 ∈ ℤ)
6 resqrexlemdecn.nm . . . 4 (𝜑𝑁 < 𝑀)
7 nnltp1le 9251 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 < 𝑀 ↔ (𝑁 + 1) ≤ 𝑀))
81, 4, 7syl2anc 409 . . . 4 (𝜑 → (𝑁 < 𝑀 ↔ (𝑁 + 1) ≤ 𝑀))
96, 8mpbid 146 . . 3 (𝜑 → (𝑁 + 1) ≤ 𝑀)
10 fveq2 5486 . . . . . 6 (𝑤 = (𝑁 + 1) → (𝐹𝑤) = (𝐹‘(𝑁 + 1)))
1110breq1d 3992 . . . . 5 (𝑤 = (𝑁 + 1) → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹‘(𝑁 + 1)) < (𝐹𝑁)))
1211imbi2d 229 . . . 4 (𝑤 = (𝑁 + 1) → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))))
13 fveq2 5486 . . . . . 6 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1413breq1d 3992 . . . . 5 (𝑤 = 𝑘 → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹𝑘) < (𝐹𝑁)))
1514imbi2d 229 . . . 4 (𝑤 = 𝑘 → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹𝑘) < (𝐹𝑁))))
16 fveq2 5486 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1716breq1d 3992 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹‘(𝑘 + 1)) < (𝐹𝑁)))
1817imbi2d 229 . . . 4 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
19 fveq2 5486 . . . . . 6 (𝑤 = 𝑀 → (𝐹𝑤) = (𝐹𝑀))
2019breq1d 3992 . . . . 5 (𝑤 = 𝑀 → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹𝑀) < (𝐹𝑁)))
2120imbi2d 229 . . . 4 (𝑤 = 𝑀 → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹𝑀) < (𝐹𝑁))))
22 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
23 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
24 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
2522, 23, 24resqrexlemdec 10953 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
261, 25mpdan 418 . . . . 5 (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
2726a1i 9 . . . 4 ((𝑁 + 1) ∈ ℤ → (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁)))
2822, 23, 24resqrexlemf 10949 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ+)
2928ad2antrr 480 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝐹:ℕ⟶ℝ+)
30 simplr2 1030 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℤ)
31 1red 7914 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ∈ ℝ)
323ad2antrr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ∈ ℤ)
3332zred 9313 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ∈ ℝ)
3430zred 9313 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℝ)
351nnred 8870 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
361nngt0d 8901 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑁)
37 0re 7899 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
38 ltle 7986 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
3937, 38mpan 421 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → (0 < 𝑁 → 0 ≤ 𝑁))
4035, 36, 39sylc 62 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝑁)
41 1red 7914 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
4241, 35addge02d 8432 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ 𝑁 ↔ 1 ≤ (𝑁 + 1)))
4340, 42mpbid 146 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (𝑁 + 1))
4443ad2antrr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ≤ (𝑁 + 1))
45 simplr3 1031 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ≤ 𝑘)
4631, 33, 34, 44, 45letrd 8022 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ≤ 𝑘)
47 elnnz1 9214 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
4830, 46, 47sylanbrc 414 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℕ)
4948peano2nnd 8872 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑘 + 1) ∈ ℕ)
5029, 49ffvelrnd 5621 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ+)
5150rpred 9632 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
5229, 48ffvelrnd 5621 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) ∈ ℝ+)
5352rpred 9632 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) ∈ ℝ)
541ad2antrr 480 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑁 ∈ ℕ)
5529, 54ffvelrnd 5621 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑁) ∈ ℝ+)
5655rpred 9632 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑁) ∈ ℝ)
57 simpll 519 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝜑)
5822, 23, 24resqrexlemdec 10953 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) < (𝐹𝑘))
5957, 48, 58syl2anc 409 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) < (𝐹𝑘))
60 simpr 109 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) < (𝐹𝑁))
6151, 53, 56, 59, 60lttrd 8024 . . . . . . 7 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))
6261ex 114 . . . . . 6 ((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) → ((𝐹𝑘) < (𝐹𝑁) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁)))
6362expcom 115 . . . . 5 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘) → (𝜑 → ((𝐹𝑘) < (𝐹𝑁) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
6463a2d 26 . . . 4 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘) → ((𝜑 → (𝐹𝑘) < (𝐹𝑁)) → (𝜑 → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
6512, 15, 18, 21, 27, 64uzind 9302 . . 3 (((𝑁 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑀) → (𝜑 → (𝐹𝑀) < (𝐹𝑁)))
663, 5, 9, 65syl3anc 1228 . 2 (𝜑 → (𝜑 → (𝐹𝑀) < (𝐹𝑁)))
6766pm2.43i 49 1 (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  {csn 3576   class class class wbr 3982   × cxp 4602  wf 5184  cfv 5188  (class class class)co 5842  cmpo 5844  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   < clt 7933  cle 7934   / cdiv 8568  cn 8857  2c2 8908  cz 9191  +crp 9589  seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  resqrexlemnm  10960  resqrexlemcvg  10961  resqrexlemoverl  10963  resqrexlemglsq  10964
  Copyright terms: Public domain W3C validator