ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemdecn GIF version

Theorem resqrexlemdecn 11156
Description: Lemma for resqrex 11170. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemdecn.n (𝜑𝑁 ∈ ℕ)
resqrexlemdecn.m (𝜑𝑀 ∈ ℕ)
resqrexlemdecn.nm (𝜑𝑁 < 𝑀)
Assertion
Ref Expression
resqrexlemdecn (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemdecn
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemdecn.n . . . . 5 (𝜑𝑁 ∈ ℕ)
21nnzd 9438 . . . 4 (𝜑𝑁 ∈ ℤ)
32peano2zd 9442 . . 3 (𝜑 → (𝑁 + 1) ∈ ℤ)
4 resqrexlemdecn.m . . . 4 (𝜑𝑀 ∈ ℕ)
54nnzd 9438 . . 3 (𝜑𝑀 ∈ ℤ)
6 resqrexlemdecn.nm . . . 4 (𝜑𝑁 < 𝑀)
7 nnltp1le 9377 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 < 𝑀 ↔ (𝑁 + 1) ≤ 𝑀))
81, 4, 7syl2anc 411 . . . 4 (𝜑 → (𝑁 < 𝑀 ↔ (𝑁 + 1) ≤ 𝑀))
96, 8mpbid 147 . . 3 (𝜑 → (𝑁 + 1) ≤ 𝑀)
10 fveq2 5554 . . . . . 6 (𝑤 = (𝑁 + 1) → (𝐹𝑤) = (𝐹‘(𝑁 + 1)))
1110breq1d 4039 . . . . 5 (𝑤 = (𝑁 + 1) → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹‘(𝑁 + 1)) < (𝐹𝑁)))
1211imbi2d 230 . . . 4 (𝑤 = (𝑁 + 1) → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))))
13 fveq2 5554 . . . . . 6 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1413breq1d 4039 . . . . 5 (𝑤 = 𝑘 → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹𝑘) < (𝐹𝑁)))
1514imbi2d 230 . . . 4 (𝑤 = 𝑘 → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹𝑘) < (𝐹𝑁))))
16 fveq2 5554 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1716breq1d 4039 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹‘(𝑘 + 1)) < (𝐹𝑁)))
1817imbi2d 230 . . . 4 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
19 fveq2 5554 . . . . . 6 (𝑤 = 𝑀 → (𝐹𝑤) = (𝐹𝑀))
2019breq1d 4039 . . . . 5 (𝑤 = 𝑀 → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹𝑀) < (𝐹𝑁)))
2120imbi2d 230 . . . 4 (𝑤 = 𝑀 → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹𝑀) < (𝐹𝑁))))
22 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
23 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
24 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
2522, 23, 24resqrexlemdec 11155 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
261, 25mpdan 421 . . . . 5 (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
2726a1i 9 . . . 4 ((𝑁 + 1) ∈ ℤ → (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁)))
2822, 23, 24resqrexlemf 11151 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ+)
2928ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝐹:ℕ⟶ℝ+)
30 simplr2 1042 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℤ)
31 1red 8034 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ∈ ℝ)
323ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ∈ ℤ)
3332zred 9439 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ∈ ℝ)
3430zred 9439 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℝ)
351nnred 8995 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
361nngt0d 9026 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑁)
37 0re 8019 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
38 ltle 8107 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
3937, 38mpan 424 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → (0 < 𝑁 → 0 ≤ 𝑁))
4035, 36, 39sylc 62 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝑁)
41 1red 8034 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
4241, 35addge02d 8553 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ 𝑁 ↔ 1 ≤ (𝑁 + 1)))
4340, 42mpbid 147 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (𝑁 + 1))
4443ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ≤ (𝑁 + 1))
45 simplr3 1043 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ≤ 𝑘)
4631, 33, 34, 44, 45letrd 8143 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ≤ 𝑘)
47 elnnz1 9340 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
4830, 46, 47sylanbrc 417 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℕ)
4948peano2nnd 8997 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑘 + 1) ∈ ℕ)
5029, 49ffvelcdmd 5694 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ+)
5150rpred 9762 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
5229, 48ffvelcdmd 5694 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) ∈ ℝ+)
5352rpred 9762 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) ∈ ℝ)
541ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑁 ∈ ℕ)
5529, 54ffvelcdmd 5694 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑁) ∈ ℝ+)
5655rpred 9762 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑁) ∈ ℝ)
57 simpll 527 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝜑)
5822, 23, 24resqrexlemdec 11155 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) < (𝐹𝑘))
5957, 48, 58syl2anc 411 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) < (𝐹𝑘))
60 simpr 110 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) < (𝐹𝑁))
6151, 53, 56, 59, 60lttrd 8145 . . . . . . 7 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))
6261ex 115 . . . . . 6 ((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) → ((𝐹𝑘) < (𝐹𝑁) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁)))
6362expcom 116 . . . . 5 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘) → (𝜑 → ((𝐹𝑘) < (𝐹𝑁) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
6463a2d 26 . . . 4 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘) → ((𝜑 → (𝐹𝑘) < (𝐹𝑁)) → (𝜑 → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
6512, 15, 18, 21, 27, 64uzind 9428 . . 3 (((𝑁 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑀) → (𝜑 → (𝐹𝑀) < (𝐹𝑁)))
663, 5, 9, 65syl3anc 1249 . 2 (𝜑 → (𝜑 → (𝐹𝑀) < (𝐹𝑁)))
6766pm2.43i 49 1 (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  {csn 3618   class class class wbr 4029   × cxp 4657  wf 5250  cfv 5254  (class class class)co 5918  cmpo 5920  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   < clt 8054  cle 8055   / cdiv 8691  cn 8982  2c2 9033  cz 9317  +crp 9719  seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  resqrexlemnm  11162  resqrexlemcvg  11163  resqrexlemoverl  11165  resqrexlemglsq  11166
  Copyright terms: Public domain W3C validator