| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrdi | GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeltrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqeltrdi.2 | . . 3 ⊢ 𝐵 ∈ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| 4 | 1, 3 | eqeltrd 2273 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: eqeltrrdi 2288 snexprc 4220 onsucelsucexmidlem 4566 dcextest 4618 nnpredcl 4660 ovprc 5961 nnmcl 6548 xpsnen 6889 pw1fin 6980 xpfi 7002 snexxph 7025 ctssdclemn0 7185 nninfisollemne 7206 nninfisol 7208 exmidonfinlem 7272 pw1on 7309 indpi 7426 nq0m0r 7540 genpelxp 7595 un0mulcl 9300 znegcl 9374 zeo 9448 eqreznegel 9705 xnegcl 9924 modqid0 10459 q2txmodxeq0 10493 ser0 10642 expcllem 10659 m1expcl2 10670 nn0ltexp2 10818 bcval 10858 bccl 10876 hashinfom 10887 resqrexlemlo 11195 iserge0 11525 sumrbdclem 11559 fsum3cvg 11560 summodclem3 11562 summodclem2a 11563 fisumss 11574 binom 11666 bcxmas 11671 prodf1 11724 prodrbdclem 11753 fproddccvg 11754 prodmodclem2a 11758 fprodntrivap 11766 prodssdc 11771 fprodssdc 11772 gcdval 12151 gcdcl 12158 lcmcl 12265 pcxnn0cl 12504 pcxcl 12505 pcmptcl 12536 infpnlem2 12554 zgz 12567 4sqlem19 12603 znf1o 14283 ssblps 14745 ssbl 14746 xmeter 14756 blssioo 14873 elply 15054 plycj 15081 1sgmprm 15314 lgslem4 15328 lgsne0 15363 2sqlem9 15449 2sqlem10 15450 bj-charfun 15537 012of 15724 2o01f 15725 nninfsellemeqinf 15747 nninffeq 15751 trilpolemclim 15767 iswomni0 15782 |
| Copyright terms: Public domain | W3C validator |