| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrdi | GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeltrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqeltrdi.2 | . . 3 ⊢ 𝐵 ∈ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| 4 | 1, 3 | eqeltrd 2281 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: eqeltrrdi 2296 snexprc 4229 onsucelsucexmidlem 4576 dcextest 4628 nnpredcl 4670 ovprc 5979 nnmcl 6566 xpsnen 6915 pw1fin 7006 xpfi 7028 snexxph 7051 ctssdclemn0 7211 nninfisollemne 7232 nninfisol 7234 exmidonfinlem 7300 pw1on 7337 indpi 7454 nq0m0r 7568 genpelxp 7623 un0mulcl 9328 znegcl 9402 zeo 9477 eqreznegel 9734 xnegcl 9953 modqid0 10493 q2txmodxeq0 10527 ser0 10676 expcllem 10693 m1expcl2 10704 nn0ltexp2 10852 bcval 10892 bccl 10910 hashinfom 10921 resqrexlemlo 11266 iserge0 11596 sumrbdclem 11630 fsum3cvg 11631 summodclem3 11633 summodclem2a 11634 fisumss 11645 binom 11737 bcxmas 11742 prodf1 11795 prodrbdclem 11824 fproddccvg 11825 prodmodclem2a 11829 fprodntrivap 11837 prodssdc 11842 fprodssdc 11843 gcdval 12222 gcdcl 12229 lcmcl 12336 pcxnn0cl 12575 pcxcl 12576 pcmptcl 12607 infpnlem2 12625 zgz 12638 4sqlem19 12674 znf1o 14355 ssblps 14839 ssbl 14840 xmeter 14850 blssioo 14967 elply 15148 plycj 15175 1sgmprm 15408 lgslem4 15422 lgsne0 15457 2sqlem9 15543 2sqlem10 15544 bj-charfun 15676 012of 15863 2o01f 15864 nninfsellemeqinf 15886 nninffeq 15890 trilpolemclim 15908 iswomni0 15923 |
| Copyright terms: Public domain | W3C validator |