| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrdi | GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeltrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqeltrdi.2 | . . 3 ⊢ 𝐵 ∈ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| 4 | 1, 3 | eqeltrd 2281 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: eqeltrrdi 2296 snexprc 4229 onsucelsucexmidlem 4575 dcextest 4627 nnpredcl 4669 ovprc 5970 nnmcl 6557 xpsnen 6898 pw1fin 6989 xpfi 7011 snexxph 7034 ctssdclemn0 7194 nninfisollemne 7215 nninfisol 7217 exmidonfinlem 7283 pw1on 7320 indpi 7437 nq0m0r 7551 genpelxp 7606 un0mulcl 9311 znegcl 9385 zeo 9460 eqreznegel 9717 xnegcl 9936 modqid0 10476 q2txmodxeq0 10510 ser0 10659 expcllem 10676 m1expcl2 10687 nn0ltexp2 10835 bcval 10875 bccl 10893 hashinfom 10904 resqrexlemlo 11243 iserge0 11573 sumrbdclem 11607 fsum3cvg 11608 summodclem3 11610 summodclem2a 11611 fisumss 11622 binom 11714 bcxmas 11719 prodf1 11772 prodrbdclem 11801 fproddccvg 11802 prodmodclem2a 11806 fprodntrivap 11814 prodssdc 11819 fprodssdc 11820 gcdval 12199 gcdcl 12206 lcmcl 12313 pcxnn0cl 12552 pcxcl 12553 pcmptcl 12584 infpnlem2 12602 zgz 12615 4sqlem19 12651 znf1o 14331 ssblps 14815 ssbl 14816 xmeter 14826 blssioo 14943 elply 15124 plycj 15151 1sgmprm 15384 lgslem4 15398 lgsne0 15433 2sqlem9 15519 2sqlem10 15520 bj-charfun 15607 012of 15794 2o01f 15795 nninfsellemeqinf 15817 nninffeq 15821 trilpolemclim 15839 iswomni0 15854 |
| Copyright terms: Public domain | W3C validator |