![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltrdi | GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeltrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqeltrdi.2 | . . 3 ⊢ 𝐵 ∈ 𝐶 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
4 | 1, 3 | eqeltrd 2254 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 |
This theorem is referenced by: eqeltrrdi 2269 snexprc 4188 onsucelsucexmidlem 4530 dcextest 4582 nnpredcl 4624 ovprc 5912 nnmcl 6484 xpsnen 6823 pw1fin 6912 xpfi 6931 snexxph 6951 ctssdclemn0 7111 nninfisollemne 7131 nninfisol 7133 exmidonfinlem 7194 pw1on 7227 indpi 7343 nq0m0r 7457 genpelxp 7512 un0mulcl 9212 znegcl 9286 zeo 9360 eqreznegel 9616 xnegcl 9834 modqid0 10352 q2txmodxeq0 10386 ser0 10516 expcllem 10533 m1expcl2 10544 nn0ltexp2 10691 bcval 10731 bccl 10749 hashinfom 10760 resqrexlemlo 11024 iserge0 11353 sumrbdclem 11387 fsum3cvg 11388 summodclem3 11390 summodclem2a 11391 fisumss 11402 binom 11494 bcxmas 11499 prodf1 11552 prodrbdclem 11581 fproddccvg 11582 prodmodclem2a 11586 fprodntrivap 11594 prodssdc 11599 fprodssdc 11600 gcdval 11962 gcdcl 11969 lcmcl 12074 pcxnn0cl 12312 pcxcl 12313 pcmptcl 12342 infpnlem2 12360 zgz 12373 ssblps 14010 ssbl 14011 xmeter 14021 blssioo 14130 lgslem4 14489 lgsne0 14524 2sqlem9 14556 2sqlem10 14557 bj-charfun 14644 012of 14830 2o01f 14831 nninfsellemeqinf 14850 nninffeq 14854 trilpolemclim 14869 iswomni0 14884 |
Copyright terms: Public domain | W3C validator |