Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltrdi | GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeltrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqeltrdi.2 | . . 3 ⊢ 𝐵 ∈ 𝐶 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
4 | 1, 3 | eqeltrd 2242 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: eqeltrrdi 2257 snexprc 4164 onsucelsucexmidlem 4505 dcextest 4557 nnpredcl 4599 ovprc 5873 nnmcl 6445 xpsnen 6783 pw1fin 6872 xpfi 6891 snexxph 6911 ctssdclemn0 7071 nninfisollemne 7091 nninfisol 7093 exmidonfinlem 7145 pw1on 7178 indpi 7279 nq0m0r 7393 genpelxp 7448 un0mulcl 9144 znegcl 9218 zeo 9292 eqreznegel 9548 xnegcl 9764 modqid0 10281 q2txmodxeq0 10315 ser0 10445 expcllem 10462 m1expcl2 10473 nn0ltexp2 10619 bcval 10658 bccl 10676 hashinfom 10687 resqrexlemlo 10951 iserge0 11280 sumrbdclem 11314 fsum3cvg 11315 summodclem3 11317 summodclem2a 11318 fisumss 11329 binom 11421 bcxmas 11426 prodf1 11479 prodrbdclem 11508 fproddccvg 11509 prodmodclem2a 11513 fprodntrivap 11521 prodssdc 11526 fprodssdc 11527 gcdval 11888 gcdcl 11895 lcmcl 12000 pcxnn0cl 12238 pcxcl 12239 pcmptcl 12268 infpnlem2 12286 zgz 12299 ssblps 13025 ssbl 13026 xmeter 13036 blssioo 13145 lgslem4 13504 lgsne0 13539 2sqlem9 13560 2sqlem10 13561 bj-charfun 13649 012of 13835 2o01f 13836 nninfsellemeqinf 13856 nninffeq 13860 trilpolemclim 13875 iswomni0 13890 |
Copyright terms: Public domain | W3C validator |