| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrdi | GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeltrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqeltrdi.2 | . . 3 ⊢ 𝐵 ∈ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| 4 | 1, 3 | eqeltrd 2273 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: eqeltrrdi 2288 snexprc 4220 onsucelsucexmidlem 4566 dcextest 4618 nnpredcl 4660 ovprc 5961 nnmcl 6548 xpsnen 6889 pw1fin 6980 xpfi 7002 snexxph 7025 ctssdclemn0 7185 nninfisollemne 7206 nninfisol 7208 exmidonfinlem 7274 pw1on 7311 indpi 7428 nq0m0r 7542 genpelxp 7597 un0mulcl 9302 znegcl 9376 zeo 9450 eqreznegel 9707 xnegcl 9926 modqid0 10461 q2txmodxeq0 10495 ser0 10644 expcllem 10661 m1expcl2 10672 nn0ltexp2 10820 bcval 10860 bccl 10878 hashinfom 10889 resqrexlemlo 11197 iserge0 11527 sumrbdclem 11561 fsum3cvg 11562 summodclem3 11564 summodclem2a 11565 fisumss 11576 binom 11668 bcxmas 11673 prodf1 11726 prodrbdclem 11755 fproddccvg 11756 prodmodclem2a 11760 fprodntrivap 11768 prodssdc 11773 fprodssdc 11774 gcdval 12153 gcdcl 12160 lcmcl 12267 pcxnn0cl 12506 pcxcl 12507 pcmptcl 12538 infpnlem2 12556 zgz 12569 4sqlem19 12605 znf1o 14285 ssblps 14769 ssbl 14770 xmeter 14780 blssioo 14897 elply 15078 plycj 15105 1sgmprm 15338 lgslem4 15352 lgsne0 15387 2sqlem9 15473 2sqlem10 15474 bj-charfun 15561 012of 15748 2o01f 15749 nninfsellemeqinf 15771 nninffeq 15775 trilpolemclim 15793 iswomni0 15808 |
| Copyright terms: Public domain | W3C validator |