| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrdi | GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeltrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqeltrdi.2 | . . 3 ⊢ 𝐵 ∈ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| 4 | 1, 3 | eqeltrd 2281 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: eqeltrrdi 2296 snexprc 4229 onsucelsucexmidlem 4576 dcextest 4628 nnpredcl 4670 ovprc 5979 nnmcl 6566 xpsnen 6915 pw1fin 7006 xpfi 7028 snexxph 7051 ctssdclemn0 7211 nninfisollemne 7232 nninfisol 7234 exmidonfinlem 7300 pw1on 7337 indpi 7454 nq0m0r 7568 genpelxp 7623 un0mulcl 9328 znegcl 9402 zeo 9477 eqreznegel 9734 xnegcl 9953 modqid0 10493 q2txmodxeq0 10527 ser0 10676 expcllem 10693 m1expcl2 10704 nn0ltexp2 10852 bcval 10892 bccl 10910 hashinfom 10921 resqrexlemlo 11295 iserge0 11625 sumrbdclem 11659 fsum3cvg 11660 summodclem3 11662 summodclem2a 11663 fisumss 11674 binom 11766 bcxmas 11771 prodf1 11824 prodrbdclem 11853 fproddccvg 11854 prodmodclem2a 11858 fprodntrivap 11866 prodssdc 11871 fprodssdc 11872 gcdval 12251 gcdcl 12258 lcmcl 12365 pcxnn0cl 12604 pcxcl 12605 pcmptcl 12636 infpnlem2 12654 zgz 12667 4sqlem19 12703 znf1o 14384 ssblps 14868 ssbl 14869 xmeter 14879 blssioo 14996 elply 15177 plycj 15204 1sgmprm 15437 lgslem4 15451 lgsne0 15486 2sqlem9 15572 2sqlem10 15573 bj-charfun 15705 012of 15892 2o01f 15893 nninfsellemeqinf 15915 nninffeq 15919 trilpolemclim 15937 iswomni0 15952 |
| Copyright terms: Public domain | W3C validator |