| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrdi | GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeltrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqeltrdi.2 | . . 3 ⊢ 𝐵 ∈ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| 4 | 1, 3 | eqeltrd 2306 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: eqeltrrdi 2321 snexprc 4269 onsucelsucexmidlem 4620 dcextest 4672 nnpredcl 4714 ovprc 6036 nnmcl 6625 xpsnen 6976 pw1fin 7068 xpfi 7090 snexxph 7113 ctssdclemn0 7273 nninfisollemne 7294 nninfisol 7296 exmidonfinlem 7367 pw1on 7407 indpi 7525 nq0m0r 7639 genpelxp 7694 un0mulcl 9399 znegcl 9473 zeo 9548 eqreznegel 9805 xnegcl 10024 modqid0 10567 q2txmodxeq0 10601 ser0 10750 expcllem 10767 m1expcl2 10778 nn0ltexp2 10926 bcval 10966 bccl 10984 hashinfom 10995 lswex 11118 pfxclz 11206 pfxwrdsymbg 11217 cats1un 11248 cats1fvn 11291 cats1fvnd 11292 resqrexlemlo 11519 iserge0 11849 sumrbdclem 11883 fsum3cvg 11884 summodclem3 11886 summodclem2a 11887 fisumss 11898 binom 11990 bcxmas 11995 prodf1 12048 prodrbdclem 12077 fproddccvg 12078 prodmodclem2a 12082 fprodntrivap 12090 prodssdc 12095 fprodssdc 12096 gcdval 12475 gcdcl 12482 lcmcl 12589 pcxnn0cl 12828 pcxcl 12829 pcmptcl 12860 infpnlem2 12878 zgz 12891 4sqlem19 12927 znf1o 14609 ssblps 15093 ssbl 15094 xmeter 15104 blssioo 15221 elply 15402 plycj 15429 1sgmprm 15662 lgslem4 15676 lgsne0 15711 2sqlem9 15797 2sqlem10 15798 bj-charfun 16128 012of 16316 2o01f 16317 nninfsellemeqinf 16341 nninffeq 16345 trilpolemclim 16363 iswomni0 16378 |
| Copyright terms: Public domain | W3C validator |