| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrdi | GIF version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqeltrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| eqeltrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqeltrdi.2 | . . 3 ⊢ 𝐵 ∈ 𝐶 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| 4 | 1, 3 | eqeltrd 2283 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: eqeltrrdi 2298 snexprc 4238 onsucelsucexmidlem 4585 dcextest 4637 nnpredcl 4679 ovprc 5993 nnmcl 6580 xpsnen 6931 pw1fin 7022 xpfi 7044 snexxph 7067 ctssdclemn0 7227 nninfisollemne 7248 nninfisol 7250 exmidonfinlem 7317 pw1on 7357 indpi 7475 nq0m0r 7589 genpelxp 7644 un0mulcl 9349 znegcl 9423 zeo 9498 eqreznegel 9755 xnegcl 9974 modqid0 10517 q2txmodxeq0 10551 ser0 10700 expcllem 10717 m1expcl2 10728 nn0ltexp2 10876 bcval 10916 bccl 10934 hashinfom 10945 lswex 11067 pfxclz 11155 pfxwrdsymbg 11166 cats1un 11197 resqrexlemlo 11399 iserge0 11729 sumrbdclem 11763 fsum3cvg 11764 summodclem3 11766 summodclem2a 11767 fisumss 11778 binom 11870 bcxmas 11875 prodf1 11928 prodrbdclem 11957 fproddccvg 11958 prodmodclem2a 11962 fprodntrivap 11970 prodssdc 11975 fprodssdc 11976 gcdval 12355 gcdcl 12362 lcmcl 12469 pcxnn0cl 12708 pcxcl 12709 pcmptcl 12740 infpnlem2 12758 zgz 12771 4sqlem19 12807 znf1o 14488 ssblps 14972 ssbl 14973 xmeter 14983 blssioo 15100 elply 15281 plycj 15308 1sgmprm 15541 lgslem4 15555 lgsne0 15590 2sqlem9 15676 2sqlem10 15677 bj-charfun 15881 012of 16069 2o01f 16070 nninfsellemeqinf 16094 nninffeq 16098 trilpolemclim 16116 iswomni0 16131 |
| Copyright terms: Public domain | W3C validator |