Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltrdi | GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeltrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqeltrdi.2 | . . 3 ⊢ 𝐵 ∈ 𝐶 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
4 | 1, 3 | eqeltrd 2247 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: eqeltrrdi 2262 snexprc 4172 onsucelsucexmidlem 4513 dcextest 4565 nnpredcl 4607 ovprc 5888 nnmcl 6460 xpsnen 6799 pw1fin 6888 xpfi 6907 snexxph 6927 ctssdclemn0 7087 nninfisollemne 7107 nninfisol 7109 exmidonfinlem 7170 pw1on 7203 indpi 7304 nq0m0r 7418 genpelxp 7473 un0mulcl 9169 znegcl 9243 zeo 9317 eqreznegel 9573 xnegcl 9789 modqid0 10306 q2txmodxeq0 10340 ser0 10470 expcllem 10487 m1expcl2 10498 nn0ltexp2 10644 bcval 10683 bccl 10701 hashinfom 10712 resqrexlemlo 10977 iserge0 11306 sumrbdclem 11340 fsum3cvg 11341 summodclem3 11343 summodclem2a 11344 fisumss 11355 binom 11447 bcxmas 11452 prodf1 11505 prodrbdclem 11534 fproddccvg 11535 prodmodclem2a 11539 fprodntrivap 11547 prodssdc 11552 fprodssdc 11553 gcdval 11914 gcdcl 11921 lcmcl 12026 pcxnn0cl 12264 pcxcl 12265 pcmptcl 12294 infpnlem2 12312 zgz 12325 ssblps 13219 ssbl 13220 xmeter 13230 blssioo 13339 lgslem4 13698 lgsne0 13733 2sqlem9 13754 2sqlem10 13755 bj-charfun 13842 012of 14028 2o01f 14029 nninfsellemeqinf 14049 nninffeq 14053 trilpolemclim 14068 iswomni0 14083 |
Copyright terms: Public domain | W3C validator |