![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltrdi | GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrdi.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeltrdi.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrdi | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrdi.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqeltrdi.2 | . . 3 ⊢ 𝐵 ∈ 𝐶 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
4 | 1, 3 | eqeltrd 2270 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: eqeltrrdi 2285 snexprc 4216 onsucelsucexmidlem 4562 dcextest 4614 nnpredcl 4656 ovprc 5954 nnmcl 6536 xpsnen 6877 pw1fin 6968 xpfi 6988 snexxph 7011 ctssdclemn0 7171 nninfisollemne 7192 nninfisol 7194 exmidonfinlem 7255 pw1on 7288 indpi 7404 nq0m0r 7518 genpelxp 7573 un0mulcl 9277 znegcl 9351 zeo 9425 eqreznegel 9682 xnegcl 9901 modqid0 10424 q2txmodxeq0 10458 ser0 10607 expcllem 10624 m1expcl2 10635 nn0ltexp2 10783 bcval 10823 bccl 10841 hashinfom 10852 resqrexlemlo 11160 iserge0 11489 sumrbdclem 11523 fsum3cvg 11524 summodclem3 11526 summodclem2a 11527 fisumss 11538 binom 11630 bcxmas 11635 prodf1 11688 prodrbdclem 11717 fproddccvg 11718 prodmodclem2a 11722 fprodntrivap 11730 prodssdc 11735 fprodssdc 11736 gcdval 12099 gcdcl 12106 lcmcl 12213 pcxnn0cl 12451 pcxcl 12452 pcmptcl 12483 infpnlem2 12501 zgz 12514 4sqlem19 12550 znf1o 14150 ssblps 14604 ssbl 14605 xmeter 14615 blssioo 14732 elply 14913 plycj 14939 lgslem4 15160 lgsne0 15195 2sqlem9 15281 2sqlem10 15282 bj-charfun 15369 012of 15556 2o01f 15557 nninfsellemeqinf 15576 nninffeq 15580 trilpolemclim 15596 iswomni0 15611 |
Copyright terms: Public domain | W3C validator |