Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snex | GIF version |
Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
snex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snex | ⊢ {𝐴} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snexg 4170 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 |
This theorem is referenced by: snelpw 4198 rext 4200 sspwb 4201 intid 4209 euabex 4210 mss 4211 exss 4212 opi1 4217 opeqsn 4237 opeqpr 4238 uniop 4240 snnex 4433 op1stb 4463 dtruex 4543 relop 4761 funopg 5232 fo1st 6136 fo2nd 6137 mapsn 6668 mapsnconst 6672 mapsncnv 6673 mapsnf1o2 6674 elixpsn 6713 ixpsnf1o 6714 ensn1 6774 mapsnen 6789 xpsnen 6799 endisj 6802 xpcomco 6804 xpassen 6808 phplem2 6831 findcard2 6867 findcard2s 6868 ac6sfi 6876 xpfi 6907 djuex 7020 0ct 7084 finomni 7116 exmidfodomrlemim 7178 djuassen 7194 cc2lem 7228 nn0ex 9141 fxnn0nninf 10394 inftonninf 10397 hashxp 10761 reldvg 13442 |
Copyright terms: Public domain | W3C validator |