Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snex | GIF version |
Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
snex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snex | ⊢ {𝐴} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snexg 4163 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 |
This theorem is referenced by: snelpw 4191 rext 4193 sspwb 4194 intid 4202 euabex 4203 mss 4204 exss 4205 opi1 4210 opeqsn 4230 opeqpr 4231 uniop 4233 snnex 4426 op1stb 4456 dtruex 4536 relop 4754 funopg 5222 fo1st 6125 fo2nd 6126 mapsn 6656 mapsnconst 6660 mapsncnv 6661 mapsnf1o2 6662 elixpsn 6701 ixpsnf1o 6702 ensn1 6762 mapsnen 6777 xpsnen 6787 endisj 6790 xpcomco 6792 xpassen 6796 phplem2 6819 findcard2 6855 findcard2s 6856 ac6sfi 6864 xpfi 6895 djuex 7008 0ct 7072 finomni 7104 exmidfodomrlemim 7157 djuassen 7173 cc2lem 7207 nn0ex 9120 fxnn0nninf 10373 inftonninf 10376 hashxp 10739 reldvg 13288 |
Copyright terms: Public domain | W3C validator |