| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snex | GIF version | ||
| Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| snex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snex | ⊢ {𝐴} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snexg 4227 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 {csn 3632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 |
| This theorem is referenced by: snelpw 4256 rext 4258 sspwb 4259 intid 4267 euabex 4268 mss 4269 exss 4270 opi1 4275 opeqsn 4295 opeqpr 4296 uniop 4298 snnex 4493 op1stb 4523 dtruex 4605 relop 4826 funopg 5302 fo1st 6233 fo2nd 6234 mapsn 6767 mapsnconst 6771 mapsncnv 6772 mapsnf1o2 6773 elixpsn 6812 ixpsnf1o 6813 ensn1 6873 mapsnen 6888 xpsnen 6898 endisj 6901 xpcomco 6903 xpassen 6907 phplem2 6932 findcard2 6968 findcard2s 6969 ac6sfi 6977 xpfi 7011 djuex 7127 0ct 7191 finomni 7224 exmidfodomrlemim 7291 djuassen 7311 cc2lem 7360 nn0ex 9283 xnn0nnen 10563 fxnn0nninf 10565 inftonninf 10568 hashxp 10952 nninfct 12281 fngsum 13138 znval 14316 fnpsr 14347 reldvg 15069 plyval 15122 elply2 15125 plyss 15128 plyco 15149 plycj 15151 |
| Copyright terms: Public domain | W3C validator |