ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snex GIF version

Theorem snex 4164
Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
snex.1 𝐴 ∈ V
Assertion
Ref Expression
snex {𝐴} ∈ V

Proof of Theorem snex
StepHypRef Expression
1 snex.1 . 2 𝐴 ∈ V
2 snexg 4163 . 2 (𝐴 ∈ V → {𝐴} ∈ V)
31, 2ax-mp 5 1 {𝐴} ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2136  Vcvv 2726  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582
This theorem is referenced by:  snelpw  4191  rext  4193  sspwb  4194  intid  4202  euabex  4203  mss  4204  exss  4205  opi1  4210  opeqsn  4230  opeqpr  4231  uniop  4233  snnex  4426  op1stb  4456  dtruex  4536  relop  4754  funopg  5222  fo1st  6125  fo2nd  6126  mapsn  6656  mapsnconst  6660  mapsncnv  6661  mapsnf1o2  6662  elixpsn  6701  ixpsnf1o  6702  ensn1  6762  mapsnen  6777  xpsnen  6787  endisj  6790  xpcomco  6792  xpassen  6796  phplem2  6819  findcard2  6855  findcard2s  6856  ac6sfi  6864  xpfi  6895  djuex  7008  0ct  7072  finomni  7104  exmidfodomrlemim  7157  djuassen  7173  cc2lem  7207  nn0ex  9120  fxnn0nninf  10373  inftonninf  10376  hashxp  10739  reldvg  13288
  Copyright terms: Public domain W3C validator