| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snex | GIF version | ||
| Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| snex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snex | ⊢ {𝐴} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snexg 4267 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 |
| This theorem is referenced by: snelpw 4297 rext 4300 sspwb 4301 intid 4309 euabex 4310 mss 4311 exss 4312 opi1 4317 opeqsn 4338 opeqpr 4339 uniop 4341 snnex 4538 op1stb 4568 dtruex 4650 relop 4871 funopg 5351 funopsn 5816 fo1st 6301 fo2nd 6302 mapsn 6835 mapsnconst 6839 mapsncnv 6840 mapsnf1o2 6841 elixpsn 6880 ixpsnf1o 6881 ensn1 6946 mapsnen 6962 xpsnen 6976 endisj 6979 xpcomco 6981 xpassen 6985 phplem2 7010 findcard2 7047 findcard2s 7048 ac6sfi 7056 xpfi 7090 djuex 7206 0ct 7270 finomni 7303 exmidfodomrlemim 7375 djuassen 7395 cc2lem 7448 nn0ex 9371 xnn0nnen 10654 fxnn0nninf 10656 inftonninf 10659 hashxp 11043 nninfct 12557 fngsum 13416 znval 14594 fnpsr 14625 reldvg 15347 plyval 15400 elply2 15403 plyss 15406 plyco 15427 plycj 15429 dom1o 16314 |
| Copyright terms: Public domain | W3C validator |