| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snex | GIF version | ||
| Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| snex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snex | ⊢ {𝐴} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snexg 4227 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 {csn 3632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 |
| This theorem is referenced by: snelpw 4256 rext 4258 sspwb 4259 intid 4267 euabex 4268 mss 4269 exss 4270 opi1 4275 opeqsn 4296 opeqpr 4297 uniop 4299 snnex 4494 op1stb 4524 dtruex 4606 relop 4827 funopg 5304 funopsn 5761 fo1st 6242 fo2nd 6243 mapsn 6776 mapsnconst 6780 mapsncnv 6781 mapsnf1o2 6782 elixpsn 6821 ixpsnf1o 6822 ensn1 6887 mapsnen 6902 xpsnen 6915 endisj 6918 xpcomco 6920 xpassen 6924 phplem2 6949 findcard2 6985 findcard2s 6986 ac6sfi 6994 xpfi 7028 djuex 7144 0ct 7208 finomni 7241 exmidfodomrlemim 7308 djuassen 7328 cc2lem 7377 nn0ex 9300 xnn0nnen 10580 fxnn0nninf 10582 inftonninf 10585 hashxp 10969 nninfct 12304 fngsum 13162 znval 14340 fnpsr 14371 reldvg 15093 plyval 15146 elply2 15149 plyss 15152 plyco 15173 plycj 15175 |
| Copyright terms: Public domain | W3C validator |