| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snex | GIF version | ||
| Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| snex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snex | ⊢ {𝐴} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snexg 4218 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 |
| This theorem is referenced by: snelpw 4247 rext 4249 sspwb 4250 intid 4258 euabex 4259 mss 4260 exss 4261 opi1 4266 opeqsn 4286 opeqpr 4287 uniop 4289 snnex 4484 op1stb 4514 dtruex 4596 relop 4817 funopg 5293 fo1st 6217 fo2nd 6218 mapsn 6751 mapsnconst 6755 mapsncnv 6756 mapsnf1o2 6757 elixpsn 6796 ixpsnf1o 6797 ensn1 6857 mapsnen 6872 xpsnen 6882 endisj 6885 xpcomco 6887 xpassen 6891 phplem2 6916 findcard2 6952 findcard2s 6953 ac6sfi 6961 xpfi 6995 djuex 7111 0ct 7175 finomni 7208 exmidfodomrlemim 7271 djuassen 7287 cc2lem 7336 nn0ex 9258 xnn0nnen 10532 fxnn0nninf 10534 inftonninf 10537 hashxp 10921 nninfct 12219 fngsum 13057 znval 14218 fnpsr 14247 reldvg 14941 plyval 14994 elply2 14997 plyss 15000 plyco 15021 plycj 15023 |
| Copyright terms: Public domain | W3C validator |