| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snex | GIF version | ||
| Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| snex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snex | ⊢ {𝐴} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snexg 4218 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 |
| This theorem is referenced by: snelpw 4247 rext 4249 sspwb 4250 intid 4258 euabex 4259 mss 4260 exss 4261 opi1 4266 opeqsn 4286 opeqpr 4287 uniop 4289 snnex 4484 op1stb 4514 dtruex 4596 relop 4817 funopg 5293 fo1st 6224 fo2nd 6225 mapsn 6758 mapsnconst 6762 mapsncnv 6763 mapsnf1o2 6764 elixpsn 6803 ixpsnf1o 6804 ensn1 6864 mapsnen 6879 xpsnen 6889 endisj 6892 xpcomco 6894 xpassen 6898 phplem2 6923 findcard2 6959 findcard2s 6960 ac6sfi 6968 xpfi 7002 djuex 7118 0ct 7182 finomni 7215 exmidfodomrlemim 7280 djuassen 7300 cc2lem 7349 nn0ex 9272 xnn0nnen 10546 fxnn0nninf 10548 inftonninf 10551 hashxp 10935 nninfct 12233 fngsum 13090 znval 14268 fnpsr 14297 reldvg 14999 plyval 15052 elply2 15055 plyss 15058 plyco 15079 plycj 15081 |
| Copyright terms: Public domain | W3C validator |