| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snex | GIF version | ||
| Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| snex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snex | ⊢ {𝐴} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snexg 4236 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 |
| This theorem is referenced by: snelpw 4265 rext 4267 sspwb 4268 intid 4276 euabex 4277 mss 4278 exss 4279 opi1 4284 opeqsn 4305 opeqpr 4306 uniop 4308 snnex 4503 op1stb 4533 dtruex 4615 relop 4836 funopg 5314 funopsn 5775 fo1st 6256 fo2nd 6257 mapsn 6790 mapsnconst 6794 mapsncnv 6795 mapsnf1o2 6796 elixpsn 6835 ixpsnf1o 6836 ensn1 6901 mapsnen 6917 xpsnen 6931 endisj 6934 xpcomco 6936 xpassen 6940 phplem2 6965 findcard2 7001 findcard2s 7002 ac6sfi 7010 xpfi 7044 djuex 7160 0ct 7224 finomni 7257 exmidfodomrlemim 7325 djuassen 7345 cc2lem 7398 nn0ex 9321 xnn0nnen 10604 fxnn0nninf 10606 inftonninf 10609 hashxp 10993 nninfct 12437 fngsum 13295 znval 14473 fnpsr 14504 reldvg 15226 plyval 15279 elply2 15282 plyss 15285 plyco 15306 plycj 15308 dom1o 16067 |
| Copyright terms: Public domain | W3C validator |