ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3c Unicode version

Theorem syl3c 63
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.)
Hypotheses
Ref Expression
syl3c.1  |-  ( ph  ->  ps )
syl3c.2  |-  ( ph  ->  ch )
syl3c.3  |-  ( ph  ->  th )
syl3c.4  |-  ( ps 
->  ( ch  ->  ( th  ->  ta ) ) )
Assertion
Ref Expression
syl3c  |-  ( ph  ->  ta )

Proof of Theorem syl3c
StepHypRef Expression
1 syl3c.3 . 2  |-  ( ph  ->  th )
2 syl3c.1 . . 3  |-  ( ph  ->  ps )
3 syl3c.2 . . 3  |-  ( ph  ->  ch )
4 syl3c.4 . . 3  |-  ( ps 
->  ( ch  ->  ( th  ->  ta ) ) )
52, 3, 4sylc 62 . 2  |-  ( ph  ->  ( th  ->  ta ) )
61, 5mpd 13 1  |-  ( ph  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  bilukdc  1415  disjiun  4038  tfrlem1  6393  tfrcl  6449  mkvprop  7259  ccfunen  7375  caucvgprprlemval  7800  suplocsrlem  7920  peano5uzti  9480  seqf1oglem2  10663  zfz1iso  10984  lcmneg  12367  prmind2  12413  pcfac  12644  cnmpt12  14730  cnmpt22  14737  limccnp2lem  15119  2sqlem6  15568  2sqlem8  15571  gropd  15615  grstructd2dom  15616  sbthom  15927
  Copyright terms: Public domain W3C validator