ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3c Unicode version

Theorem syl3c 63
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.)
Hypotheses
Ref Expression
syl3c.1  |-  ( ph  ->  ps )
syl3c.2  |-  ( ph  ->  ch )
syl3c.3  |-  ( ph  ->  th )
syl3c.4  |-  ( ps 
->  ( ch  ->  ( th  ->  ta ) ) )
Assertion
Ref Expression
syl3c  |-  ( ph  ->  ta )

Proof of Theorem syl3c
StepHypRef Expression
1 syl3c.3 . 2  |-  ( ph  ->  th )
2 syl3c.1 . . 3  |-  ( ph  ->  ps )
3 syl3c.2 . . 3  |-  ( ph  ->  ch )
4 syl3c.4 . . 3  |-  ( ps 
->  ( ch  ->  ( th  ->  ta ) ) )
52, 3, 4sylc 62 . 2  |-  ( ph  ->  ( th  ->  ta ) )
61, 5mpd 13 1  |-  ( ph  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  bilukdc  1407  disjiun  4029  tfrlem1  6367  tfrcl  6423  mkvprop  7225  ccfunen  7333  caucvgprprlemval  7757  suplocsrlem  7877  peano5uzti  9436  seqf1oglem2  10614  zfz1iso  10935  lcmneg  12252  prmind2  12298  pcfac  12529  cnmpt12  14533  cnmpt22  14540  limccnp2lem  14922  2sqlem6  15371  2sqlem8  15374  sbthom  15680
  Copyright terms: Public domain W3C validator