ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3c Unicode version

Theorem syl3c 63
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011.)
Hypotheses
Ref Expression
syl3c.1  |-  ( ph  ->  ps )
syl3c.2  |-  ( ph  ->  ch )
syl3c.3  |-  ( ph  ->  th )
syl3c.4  |-  ( ps 
->  ( ch  ->  ( th  ->  ta ) ) )
Assertion
Ref Expression
syl3c  |-  ( ph  ->  ta )

Proof of Theorem syl3c
StepHypRef Expression
1 syl3c.3 . 2  |-  ( ph  ->  th )
2 syl3c.1 . . 3  |-  ( ph  ->  ps )
3 syl3c.2 . . 3  |-  ( ph  ->  ch )
4 syl3c.4 . . 3  |-  ( ps 
->  ( ch  ->  ( th  ->  ta ) ) )
52, 3, 4sylc 62 . 2  |-  ( ph  ->  ( th  ->  ta ) )
61, 5mpd 13 1  |-  ( ph  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  bilukdc  1438  disjiun  4077  tfrlem1  6452  tfrcl  6508  mkvprop  7321  ccfunen  7446  caucvgprprlemval  7871  suplocsrlem  7991  peano5uzti  9551  seqf1oglem2  10737  zfz1iso  11058  wrd2ind  11250  lcmneg  12591  prmind2  12637  pcfac  12868  cnmpt12  14955  cnmpt22  14962  limccnp2lem  15344  2sqlem6  15793  2sqlem8  15796  gropd  15842  grstructd2dom  15843  sbthom  16353
  Copyright terms: Public domain W3C validator