ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limccnp2lem GIF version

Theorem limccnp2lem 12720
Description: Lemma for limccnp2cntop 12721. This is most of the result, expressed in epsilon-delta form, with a large number of hypotheses so that lengthy expressions do not need to be repeated. (Contributed by Jim Kingdon, 9-Nov-2023.)
Hypotheses
Ref Expression
limccnp2.r ((𝜑𝑥𝐴) → 𝑅𝑋)
limccnp2.s ((𝜑𝑥𝐴) → 𝑆𝑌)
limccnp2.x (𝜑𝑋 ⊆ ℂ)
limccnp2.y (𝜑𝑌 ⊆ ℂ)
limccnp2cntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
limccnp2.j 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))
limccnp2.c (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))
limccnp2.d (𝜑𝐷 ∈ ((𝑥𝐴𝑆) lim 𝐵))
limccnp2.h (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))
limccnp2lem.nf 𝑥𝜑
limccnp2lem.e (𝜑𝐸 ∈ ℝ+)
limccnp2lem.j (𝜑𝐿 ∈ ℝ+)
limccnp2lem.rs (𝜑 → ∀𝑟𝑋𝑠𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸))
limccnp2lem.f (𝜑𝐹 ∈ ℝ+)
limccnp2lem.fj (𝜑 → ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐹) → (abs‘(𝑅𝐶)) < 𝐿))
limccnp2lem.g (𝜑𝐺 ∈ ℝ+)
limccnp2lem.gj (𝜑 → ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐺) → (abs‘(𝑆𝐷)) < 𝐿))
Assertion
Ref Expression
limccnp2lem (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝑑) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐻   𝑥,𝑋   𝑥,𝐴   𝑥,𝑌   𝐴,𝑑   𝐵,𝑑   𝐶,𝑑,𝑟,𝑠   𝐷,𝑑,𝑟,𝑠   𝐸,𝑑,𝑟,𝑠   𝐹,𝑑,𝑥   𝐺,𝑑,𝑥   𝐻,𝑑,𝑟,𝑠   𝐿,𝑟,𝑠   𝑅,𝑑,𝑟,𝑠   𝑆,𝑑,𝑠   𝑋,𝑟,𝑠   𝑌,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑥,𝑠,𝑟,𝑑)   𝐴(𝑠,𝑟)   𝐵(𝑠,𝑟)   𝑅(𝑥)   𝑆(𝑥,𝑟)   𝐸(𝑥)   𝐹(𝑠,𝑟)   𝐺(𝑠,𝑟)   𝐽(𝑥,𝑠,𝑟,𝑑)   𝐾(𝑥,𝑠,𝑟,𝑑)   𝐿(𝑥,𝑑)   𝑋(𝑑)   𝑌(𝑑)

Proof of Theorem limccnp2lem
StepHypRef Expression
1 limccnp2lem.f . . 3 (𝜑𝐹 ∈ ℝ+)
2 limccnp2lem.g . . 3 (𝜑𝐺 ∈ ℝ+)
3 rpmincl 10960 . . 3 ((𝐹 ∈ ℝ+𝐺 ∈ ℝ+) → inf({𝐹, 𝐺}, ℝ, < ) ∈ ℝ+)
41, 2, 3syl2anc 406 . 2 (𝜑 → inf({𝐹, 𝐺}, ℝ, < ) ∈ ℝ+)
5 limccnp2lem.nf . . 3 𝑥𝜑
6 limccnp2.j . . . . . . . . . . 11 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌))
7 limccnp2cntop.k . . . . . . . . . . . . . 14 𝐾 = (MetOpen‘(abs ∘ − ))
87cntoptopon 12607 . . . . . . . . . . . . 13 𝐾 ∈ (TopOn‘ℂ)
9 txtopon 12337 . . . . . . . . . . . . 13 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐾 ∈ (TopOn‘ℂ)) → (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ)))
108, 8, 9mp2an 420 . . . . . . . . . . . 12 (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ))
11 limccnp2.x . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ ℂ)
12 limccnp2.y . . . . . . . . . . . . 13 (𝜑𝑌 ⊆ ℂ)
13 xpss12 4614 . . . . . . . . . . . . 13 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
1411, 12, 13syl2anc 406 . . . . . . . . . . . 12 (𝜑 → (𝑋 × 𝑌) ⊆ (ℂ × ℂ))
15 resttopon 12246 . . . . . . . . . . . 12 (((𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ × ℂ)) ∧ (𝑋 × 𝑌) ⊆ (ℂ × ℂ)) → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ (TopOn‘(𝑋 × 𝑌)))
1610, 14, 15sylancr 408 . . . . . . . . . . 11 (𝜑 → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ (TopOn‘(𝑋 × 𝑌)))
176, 16eqeltrid 2202 . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘(𝑋 × 𝑌)))
188a1i 9 . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘ℂ))
19 limccnp2.h . . . . . . . . . 10 (𝜑𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩))
20 cnpf2 12282 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩)) → 𝐻:(𝑋 × 𝑌)⟶ℂ)
2117, 18, 19, 20syl3anc 1199 . . . . . . . . 9 (𝜑𝐻:(𝑋 × 𝑌)⟶ℂ)
2221ad2antrr 477 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐻:(𝑋 × 𝑌)⟶ℂ)
237cntoptop 12608 . . . . . . . . . . . . . . . . 17 𝐾 ∈ Top
2423a1i 9 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ Top)
25 txtop 12335 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Top ∧ 𝐾 ∈ Top) → (𝐾 ×t 𝐾) ∈ Top)
2623, 24, 25sylancr 408 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾 ×t 𝐾) ∈ Top)
27 cnex 7708 . . . . . . . . . . . . . . . . . . 19 ℂ ∈ V
2827a1i 9 . . . . . . . . . . . . . . . . . 18 (𝜑 → ℂ ∈ V)
2928, 11ssexd 4036 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ V)
3028, 12ssexd 4036 . . . . . . . . . . . . . . . . 17 (𝜑𝑌 ∈ V)
31 xpexg 4621 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 × 𝑌) ∈ V)
3229, 30, 31syl2anc 406 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑋 × 𝑌) ∈ V)
33 resttop 12245 . . . . . . . . . . . . . . . 16 (((𝐾 ×t 𝐾) ∈ Top ∧ (𝑋 × 𝑌) ∈ V) → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ Top)
3426, 32, 33syl2anc 406 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ Top)
356, 34eqeltrid 2202 . . . . . . . . . . . . . 14 (𝜑𝐽 ∈ Top)
36 toptopon2 12092 . . . . . . . . . . . . . 14 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
3735, 36sylib 121 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
38 cnprcl2k 12281 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ Top ∧ 𝐻 ∈ ((𝐽 CnP 𝐾)‘⟨𝐶, 𝐷⟩)) → ⟨𝐶, 𝐷⟩ ∈ 𝐽)
3937, 24, 19, 38syl3anc 1199 . . . . . . . . . . . 12 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ 𝐽)
40 toponuni 12088 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = 𝐽)
4117, 40syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑋 × 𝑌) = 𝐽)
4239, 41eleqtrrd 2195 . . . . . . . . . . 11 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
43 opelxp 4537 . . . . . . . . . . 11 (⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌) ↔ (𝐶𝑋𝐷𝑌))
4442, 43sylib 121 . . . . . . . . . 10 (𝜑 → (𝐶𝑋𝐷𝑌))
4544simpld 111 . . . . . . . . 9 (𝜑𝐶𝑋)
4645ad2antrr 477 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐶𝑋)
4744simprd 113 . . . . . . . . 9 (𝜑𝐷𝑌)
4847ad2antrr 477 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐷𝑌)
4922, 46, 48fovrnd 5881 . . . . . . 7 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐶𝐻𝐷) ∈ ℂ)
50 simpl 108 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝜑𝑥𝐴))
51 limccnp2.r . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑅𝑋)
5250, 51syl 14 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑅𝑋)
53 limccnp2.s . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑆𝑌)
5450, 53syl 14 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑆𝑌)
5522, 52, 54fovrnd 5881 . . . . . . 7 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝑅𝐻𝑆) ∈ ℂ)
56 eqid 2115 . . . . . . . 8 (abs ∘ − ) = (abs ∘ − )
5756cnmetdval 12604 . . . . . . 7 (((𝐶𝐻𝐷) ∈ ℂ ∧ (𝑅𝐻𝑆) ∈ ℂ) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) = (abs‘((𝐶𝐻𝐷) − (𝑅𝐻𝑆))))
5849, 55, 57syl2anc 406 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) = (abs‘((𝐶𝐻𝐷) − (𝑅𝐻𝑆))))
5949, 55abssubd 10916 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (abs‘((𝐶𝐻𝐷) − (𝑅𝐻𝑆))) = (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))))
6058, 59eqtrd 2148 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) = (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))))
6152, 54jca 302 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝑅𝑋𝑆𝑌))
62 limccnp2lem.rs . . . . . . 7 (𝜑 → ∀𝑟𝑋𝑠𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸))
6362ad2antrr 477 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → ∀𝑟𝑋𝑠𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸))
6446, 52ovresd 5877 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) = (𝐶(abs ∘ − )𝑅))
6511, 45sseldd 3066 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
6665ad2antrr 477 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐶 ∈ ℂ)
6711ad2antrr 477 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑋 ⊆ ℂ)
6867, 52sseldd 3066 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑅 ∈ ℂ)
6956cnmetdval 12604 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝐶(abs ∘ − )𝑅) = (abs‘(𝐶𝑅)))
7066, 68, 69syl2anc 406 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐶(abs ∘ − )𝑅) = (abs‘(𝐶𝑅)))
7166, 68abssubd 10916 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (abs‘(𝐶𝑅)) = (abs‘(𝑅𝐶)))
7264, 70, 713eqtrd 2152 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) = (abs‘(𝑅𝐶)))
73 simprl 503 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑥 # 𝐵)
7451ex 114 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑥𝐴𝑅𝑋))
755, 74ralrimi 2478 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐴 𝑅𝑋)
76 dmmptg 5004 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐴 𝑅𝑋 → dom (𝑥𝐴𝑅) = 𝐴)
7775, 76syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝑅) = 𝐴)
78 limccnp2.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵))
79 limcrcl 12702 . . . . . . . . . . . . . . . . . 18 (𝐶 ∈ ((𝑥𝐴𝑅) lim 𝐵) → ((𝑥𝐴𝑅):dom (𝑥𝐴𝑅)⟶ℂ ∧ dom (𝑥𝐴𝑅) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
8078, 79syl 14 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑥𝐴𝑅):dom (𝑥𝐴𝑅)⟶ℂ ∧ dom (𝑥𝐴𝑅) ⊆ ℂ ∧ 𝐵 ∈ ℂ))
8180simp2d 977 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝑅) ⊆ ℂ)
8277, 81eqsstrrd 3102 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℂ)
8382ad2antrr 477 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐴 ⊆ ℂ)
8450simprd 113 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑥𝐴)
8583, 84sseldd 3066 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑥 ∈ ℂ)
8680simp3d 978 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℂ)
8786ad2antrr 477 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐵 ∈ ℂ)
8885, 87subcld 8037 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝑥𝐵) ∈ ℂ)
8988abscld 10904 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (abs‘(𝑥𝐵)) ∈ ℝ)
901ad2antrr 477 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐹 ∈ ℝ+)
9190rpred 9434 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐹 ∈ ℝ)
922ad2antrr 477 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐺 ∈ ℝ+)
9392rpred 9434 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐺 ∈ ℝ)
94 mincl 10953 . . . . . . . . . . . 12 ((𝐹 ∈ ℝ ∧ 𝐺 ∈ ℝ) → inf({𝐹, 𝐺}, ℝ, < ) ∈ ℝ)
9591, 93, 94syl2anc 406 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → inf({𝐹, 𝐺}, ℝ, < ) ∈ ℝ)
96 simprr 504 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))
97 min1inf 10954 . . . . . . . . . . . 12 ((𝐹 ∈ ℝ ∧ 𝐺 ∈ ℝ) → inf({𝐹, 𝐺}, ℝ, < ) ≤ 𝐹)
9891, 93, 97syl2anc 406 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → inf({𝐹, 𝐺}, ℝ, < ) ≤ 𝐹)
9989, 95, 91, 96, 98ltletrd 8149 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (abs‘(𝑥𝐵)) < 𝐹)
10073, 99jca 302 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐹))
101 limccnp2lem.fj . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐹) → (abs‘(𝑅𝐶)) < 𝐿))
102101r19.21bi 2495 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐹) → (abs‘(𝑅𝐶)) < 𝐿))
10350, 100, 102sylc 62 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (abs‘(𝑅𝐶)) < 𝐿)
10472, 103eqbrtrd 3918 . . . . . . 7 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿)
10548, 54ovresd 5877 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆) = (𝐷(abs ∘ − )𝑆))
10612, 47sseldd 3066 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
107106ad2antrr 477 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐷 ∈ ℂ)
10812ad2antrr 477 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑌 ⊆ ℂ)
109108, 54sseldd 3066 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑆 ∈ ℂ)
11056cnmetdval 12604 . . . . . . . . . 10 ((𝐷 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (𝐷(abs ∘ − )𝑆) = (abs‘(𝐷𝑆)))
111107, 109, 110syl2anc 406 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐷(abs ∘ − )𝑆) = (abs‘(𝐷𝑆)))
112107, 109abssubd 10916 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (abs‘(𝐷𝑆)) = (abs‘(𝑆𝐷)))
113105, 111, 1123eqtrd 2152 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆) = (abs‘(𝑆𝐷)))
114 min2inf 10955 . . . . . . . . . . . 12 ((𝐹 ∈ ℝ ∧ 𝐺 ∈ ℝ) → inf({𝐹, 𝐺}, ℝ, < ) ≤ 𝐺)
11591, 93, 114syl2anc 406 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → inf({𝐹, 𝐺}, ℝ, < ) ≤ 𝐺)
11689, 95, 93, 96, 115ltletrd 8149 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (abs‘(𝑥𝐵)) < 𝐺)
11773, 116jca 302 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐺))
118 limccnp2lem.gj . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐺) → (abs‘(𝑆𝐷)) < 𝐿))
119118r19.21bi 2495 . . . . . . . . 9 ((𝜑𝑥𝐴) → ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝐺) → (abs‘(𝑆𝐷)) < 𝐿))
12050, 117, 119sylc 62 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (abs‘(𝑆𝐷)) < 𝐿)
121113, 120eqbrtrd 3918 . . . . . . 7 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆) < 𝐿)
122104, 121jca 302 . . . . . 6 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → ((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆) < 𝐿))
123 oveq2 5748 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) = (𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅))
124123breq1d 3907 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ↔ (𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿))
125124anbi1d 458 . . . . . . . 8 (𝑟 = 𝑅 → (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) ↔ ((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿)))
126 oveq1 5747 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑟𝐻𝑠) = (𝑅𝐻𝑠))
127126oveq2d 5756 . . . . . . . . 9 (𝑟 = 𝑅 → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) = ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑠)))
128127breq1d 3907 . . . . . . . 8 (𝑟 = 𝑅 → (((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸 ↔ ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑠)) < 𝐸))
129125, 128imbi12d 233 . . . . . . 7 (𝑟 = 𝑅 → ((((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸) ↔ (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑠)) < 𝐸)))
130 oveq2 5748 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) = (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆))
131130breq1d 3907 . . . . . . . . 9 (𝑠 = 𝑆 → ((𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿 ↔ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆) < 𝐿))
132131anbi2d 457 . . . . . . . 8 (𝑠 = 𝑆 → (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) ↔ ((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆) < 𝐿)))
133 oveq2 5748 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝑅𝐻𝑠) = (𝑅𝐻𝑆))
134133oveq2d 5756 . . . . . . . . 9 (𝑠 = 𝑆 → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑠)) = ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)))
135134breq1d 3907 . . . . . . . 8 (𝑠 = 𝑆 → (((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑠)) < 𝐸 ↔ ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) < 𝐸))
136132, 135imbi12d 233 . . . . . . 7 (𝑠 = 𝑆 → ((((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑠)) < 𝐸) ↔ (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) < 𝐸)))
137129, 136rspc2v 2774 . . . . . 6 ((𝑅𝑋𝑆𝑌) → (∀𝑟𝑋𝑠𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸) → (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) < 𝐸)))
13861, 63, 122, 137syl3c 63 . . . . 5 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) < 𝐸)
13960, 138eqbrtrrd 3920 . . . 4 (((𝜑𝑥𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸)
140139exp31 359 . . 3 (𝜑 → (𝑥𝐴 → ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < )) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸)))
1415, 140ralrimi 2478 . 2 (𝜑 → ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < )) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸))
142 breq2 3901 . . . 4 (𝑑 = inf({𝐹, 𝐺}, ℝ, < ) → ((abs‘(𝑥𝐵)) < 𝑑 ↔ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < )))
143142anbi2d 457 . . 3 (𝑑 = inf({𝐹, 𝐺}, ℝ, < ) → ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝑑) ↔ (𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))))
144143rspceaimv 2769 . 2 ((inf({𝐹, 𝐺}, ℝ, < ) ∈ ℝ+ ∧ ∀𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < inf({𝐹, 𝐺}, ℝ, < )) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸)) → ∃𝑑 ∈ ℝ+𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝑑) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸))
1454, 141, 144syl2anc 406 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑥𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥𝐵)) < 𝑑) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 945   = wceq 1314  wnf 1419  wcel 1463  wral 2391  wrex 2392  Vcvv 2658  wss 3039  {cpr 3496  cop 3498   cuni 3704   class class class wbr 3897  cmpt 3957   × cxp 4505  dom cdm 4507  cres 4509  ccom 4511  wf 5087  cfv 5091  (class class class)co 5740  infcinf 6836  cc 7582  cr 7583   < clt 7764  cle 7765  cmin 7897   # cap 8306  +crp 9393  abscabs 10720  t crest 12026  MetOpencmopn 12060  Topctop 12070  TopOnctopon 12083   CnP ccnp 12261   ×t ctx 12327   lim climc 12698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-map 6510  df-pm 6511  df-sup 6837  df-inf 6838  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-3 8740  df-4 8741  df-n0 8932  df-z 9009  df-uz 9279  df-q 9364  df-rp 9394  df-xneg 9510  df-xadd 9511  df-seqfrec 10170  df-exp 10244  df-cj 10565  df-re 10566  df-im 10567  df-rsqrt 10721  df-abs 10722  df-rest 12028  df-topgen 12047  df-psmet 12062  df-xmet 12063  df-met 12064  df-bl 12065  df-mopn 12066  df-top 12071  df-topon 12084  df-bases 12116  df-cnp 12264  df-tx 12328  df-limced 12700
This theorem is referenced by:  limccnp2cntop  12721
  Copyright terms: Public domain W3C validator