Proof of Theorem limccnp2lem
Step | Hyp | Ref
| Expression |
1 | | limccnp2lem.f |
. . 3
⊢ (𝜑 → 𝐹 ∈
ℝ+) |
2 | | limccnp2lem.g |
. . 3
⊢ (𝜑 → 𝐺 ∈
ℝ+) |
3 | | rpmincl 11201 |
. . 3
⊢ ((𝐹 ∈ ℝ+
∧ 𝐺 ∈
ℝ+) → inf({𝐹, 𝐺}, ℝ, < ) ∈
ℝ+) |
4 | 1, 2, 3 | syl2anc 409 |
. 2
⊢ (𝜑 → inf({𝐹, 𝐺}, ℝ, < ) ∈
ℝ+) |
5 | | limccnp2lem.nf |
. . 3
⊢
Ⅎ𝑥𝜑 |
6 | | limccnp2.j |
. . . . . . . . . . 11
⊢ 𝐽 = ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) |
7 | | limccnp2cntop.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 = (MetOpen‘(abs ∘
− )) |
8 | 7 | cntoptopon 13326 |
. . . . . . . . . . . . 13
⊢ 𝐾 ∈
(TopOn‘ℂ) |
9 | | txtopon 13056 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ 𝐾 ∈
(TopOn‘ℂ)) → (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ ×
ℂ))) |
10 | 8, 8, 9 | mp2an 424 |
. . . . . . . . . . . 12
⊢ (𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ
× ℂ)) |
11 | | limccnp2.x |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
12 | | limccnp2.y |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ⊆ ℂ) |
13 | | xpss12 4718 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ)) |
14 | 11, 12, 13 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 × 𝑌) ⊆ (ℂ ×
ℂ)) |
15 | | resttopon 12965 |
. . . . . . . . . . . 12
⊢ (((𝐾 ×t 𝐾) ∈ (TopOn‘(ℂ
× ℂ)) ∧ (𝑋
× 𝑌) ⊆ (ℂ
× ℂ)) → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ (TopOn‘(𝑋 × 𝑌))) |
16 | 10, 14, 15 | sylancr 412 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ (TopOn‘(𝑋 × 𝑌))) |
17 | 6, 16 | eqeltrid 2257 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ (TopOn‘(𝑋 × 𝑌))) |
18 | 8 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈
(TopOn‘ℂ)) |
19 | | limccnp2.h |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉)) |
20 | | cnpf2 13001 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ 𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉)) → 𝐻:(𝑋 × 𝑌)⟶ℂ) |
21 | 17, 18, 19, 20 | syl3anc 1233 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻:(𝑋 × 𝑌)⟶ℂ) |
22 | 21 | ad2antrr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐻:(𝑋 × 𝑌)⟶ℂ) |
23 | 7 | cntoptop 13327 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐾 ∈ Top |
24 | 23 | a1i 9 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈ Top) |
25 | | txtop 13054 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ Top ∧ 𝐾 ∈ Top) → (𝐾 ×t 𝐾) ∈ Top) |
26 | 23, 24, 25 | sylancr 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐾 ×t 𝐾) ∈ Top) |
27 | | cnex 7898 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℂ
∈ V |
28 | 27 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ℂ ∈
V) |
29 | 28, 11 | ssexd 4129 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑋 ∈ V) |
30 | 28, 12 | ssexd 4129 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑌 ∈ V) |
31 | | xpexg 4725 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋 × 𝑌) ∈ V) |
32 | 29, 30, 31 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑋 × 𝑌) ∈ V) |
33 | | resttop 12964 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ×t 𝐾) ∈ Top ∧ (𝑋 × 𝑌) ∈ V) → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ Top) |
34 | 26, 32, 33 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐾 ×t 𝐾) ↾t (𝑋 × 𝑌)) ∈ Top) |
35 | 6, 34 | eqeltrid 2257 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐽 ∈ Top) |
36 | | toptopon2 12811 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
37 | 35, 36 | sylib 121 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
38 | | cnprcl2k 13000 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐾 ∈ Top ∧
𝐻 ∈ ((𝐽 CnP 𝐾)‘〈𝐶, 𝐷〉)) → 〈𝐶, 𝐷〉 ∈ ∪
𝐽) |
39 | 37, 24, 19, 38 | syl3anc 1233 |
. . . . . . . . . . . 12
⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ ∪
𝐽) |
40 | | toponuni 12807 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘(𝑋 × 𝑌)) → (𝑋 × 𝑌) = ∪ 𝐽) |
41 | 17, 40 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 × 𝑌) = ∪ 𝐽) |
42 | 39, 41 | eleqtrrd 2250 |
. . . . . . . . . . 11
⊢ (𝜑 → 〈𝐶, 𝐷〉 ∈ (𝑋 × 𝑌)) |
43 | | opelxp 4641 |
. . . . . . . . . . 11
⊢
(〈𝐶, 𝐷〉 ∈ (𝑋 × 𝑌) ↔ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) |
44 | 42, 43 | sylib 121 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) |
45 | 44 | simpld 111 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
46 | 45 | ad2antrr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐶 ∈ 𝑋) |
47 | 44 | simprd 113 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝑌) |
48 | 47 | ad2antrr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐷 ∈ 𝑌) |
49 | 22, 46, 48 | fovrnd 5997 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐶𝐻𝐷) ∈ ℂ) |
50 | | simpl 108 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝜑 ∧ 𝑥 ∈ 𝐴)) |
51 | | limccnp2.r |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝑋) |
52 | 50, 51 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑅 ∈ 𝑋) |
53 | | limccnp2.s |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑆 ∈ 𝑌) |
54 | 50, 53 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑆 ∈ 𝑌) |
55 | 22, 52, 54 | fovrnd 5997 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝑅𝐻𝑆) ∈ ℂ) |
56 | | eqid 2170 |
. . . . . . . 8
⊢ (abs
∘ − ) = (abs ∘ − ) |
57 | 56 | cnmetdval 13323 |
. . . . . . 7
⊢ (((𝐶𝐻𝐷) ∈ ℂ ∧ (𝑅𝐻𝑆) ∈ ℂ) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) = (abs‘((𝐶𝐻𝐷) − (𝑅𝐻𝑆)))) |
58 | 49, 55, 57 | syl2anc 409 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) = (abs‘((𝐶𝐻𝐷) − (𝑅𝐻𝑆)))) |
59 | 49, 55 | abssubd 11157 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) →
(abs‘((𝐶𝐻𝐷) − (𝑅𝐻𝑆))) = (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷)))) |
60 | 58, 59 | eqtrd 2203 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) = (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷)))) |
61 | 52, 54 | jca 304 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) |
62 | | limccnp2lem.rs |
. . . . . . 7
⊢ (𝜑 → ∀𝑟 ∈ 𝑋 ∀𝑠 ∈ 𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸)) |
63 | 62 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → ∀𝑟 ∈ 𝑋 ∀𝑠 ∈ 𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸)) |
64 | 46, 52 | ovresd 5993 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐶((abs ∘ − ) ↾
(𝑋 × 𝑋))𝑅) = (𝐶(abs ∘ − )𝑅)) |
65 | 11, 45 | sseldd 3148 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ℂ) |
66 | 65 | ad2antrr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐶 ∈
ℂ) |
67 | 11 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑋 ⊆
ℂ) |
68 | 67, 52 | sseldd 3148 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑅 ∈
ℂ) |
69 | 56 | cnmetdval 13323 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝐶(abs ∘ − )𝑅) = (abs‘(𝐶 − 𝑅))) |
70 | 66, 68, 69 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐶(abs ∘ − )𝑅) = (abs‘(𝐶 − 𝑅))) |
71 | 66, 68 | abssubd 11157 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) →
(abs‘(𝐶 − 𝑅)) = (abs‘(𝑅 − 𝐶))) |
72 | 64, 70, 71 | 3eqtrd 2207 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐶((abs ∘ − ) ↾
(𝑋 × 𝑋))𝑅) = (abs‘(𝑅 − 𝐶))) |
73 | | simprl 526 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑥 # 𝐵) |
74 | 51 | ex 114 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑅 ∈ 𝑋)) |
75 | 5, 74 | ralrimi 2541 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑅 ∈ 𝑋) |
76 | | dmmptg 5108 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
𝐴 𝑅 ∈ 𝑋 → dom (𝑥 ∈ 𝐴 ↦ 𝑅) = 𝐴) |
77 | 75, 76 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝑅) = 𝐴) |
78 | | limccnp2.c |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝐵)) |
79 | | limcrcl 13421 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝑅) limℂ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝑅):dom (𝑥 ∈ 𝐴 ↦ 𝑅)⟶ℂ ∧ dom (𝑥 ∈ 𝐴 ↦ 𝑅) ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
80 | 78, 79 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝑅):dom (𝑥 ∈ 𝐴 ↦ 𝑅)⟶ℂ ∧ dom (𝑥 ∈ 𝐴 ↦ 𝑅) ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
81 | 80 | simp2d 1005 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝑅) ⊆ ℂ) |
82 | 77, 81 | eqsstrrd 3184 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
83 | 82 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐴 ⊆
ℂ) |
84 | 50 | simprd 113 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑥 ∈ 𝐴) |
85 | 83, 84 | sseldd 3148 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑥 ∈
ℂ) |
86 | 80 | simp3d 1006 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ ℂ) |
87 | 86 | ad2antrr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐵 ∈
ℂ) |
88 | 85, 87 | subcld 8230 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝑥 − 𝐵) ∈ ℂ) |
89 | 88 | abscld 11145 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) →
(abs‘(𝑥 − 𝐵)) ∈
ℝ) |
90 | 1 | ad2antrr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐹 ∈
ℝ+) |
91 | 90 | rpred 9653 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐹 ∈
ℝ) |
92 | 2 | ad2antrr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐺 ∈
ℝ+) |
93 | 92 | rpred 9653 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐺 ∈
ℝ) |
94 | | mincl 11194 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ℝ ∧ 𝐺 ∈ ℝ) →
inf({𝐹, 𝐺}, ℝ, < ) ∈
ℝ) |
95 | 91, 93, 94 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → inf({𝐹, 𝐺}, ℝ, < ) ∈
ℝ) |
96 | | simprr 527 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) →
(abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < )) |
97 | | min1inf 11195 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ℝ ∧ 𝐺 ∈ ℝ) →
inf({𝐹, 𝐺}, ℝ, < ) ≤ 𝐹) |
98 | 91, 93, 97 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → inf({𝐹, 𝐺}, ℝ, < ) ≤ 𝐹) |
99 | 89, 95, 91, 96, 98 | ltletrd 8342 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) →
(abs‘(𝑥 − 𝐵)) < 𝐹) |
100 | 73, 99 | jca 304 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝐹)) |
101 | | limccnp2lem.fj |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝐹) → (abs‘(𝑅 − 𝐶)) < 𝐿)) |
102 | 101 | r19.21bi 2558 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝐹) → (abs‘(𝑅 − 𝐶)) < 𝐿)) |
103 | 50, 100, 102 | sylc 62 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) →
(abs‘(𝑅 − 𝐶)) < 𝐿) |
104 | 72, 103 | eqbrtrd 4011 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐶((abs ∘ − ) ↾
(𝑋 × 𝑋))𝑅) < 𝐿) |
105 | 48, 54 | ovresd 5993 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐷((abs ∘ − ) ↾
(𝑌 × 𝑌))𝑆) = (𝐷(abs ∘ − )𝑆)) |
106 | 12, 47 | sseldd 3148 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ ℂ) |
107 | 106 | ad2antrr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝐷 ∈
ℂ) |
108 | 12 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑌 ⊆
ℂ) |
109 | 108, 54 | sseldd 3148 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → 𝑆 ∈
ℂ) |
110 | 56 | cnmetdval 13323 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (𝐷(abs ∘ − )𝑆) = (abs‘(𝐷 − 𝑆))) |
111 | 107, 109,
110 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐷(abs ∘ − )𝑆) = (abs‘(𝐷 − 𝑆))) |
112 | 107, 109 | abssubd 11157 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) →
(abs‘(𝐷 − 𝑆)) = (abs‘(𝑆 − 𝐷))) |
113 | 105, 111,
112 | 3eqtrd 2207 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐷((abs ∘ − ) ↾
(𝑌 × 𝑌))𝑆) = (abs‘(𝑆 − 𝐷))) |
114 | | min2inf 11196 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ ℝ ∧ 𝐺 ∈ ℝ) →
inf({𝐹, 𝐺}, ℝ, < ) ≤ 𝐺) |
115 | 91, 93, 114 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → inf({𝐹, 𝐺}, ℝ, < ) ≤ 𝐺) |
116 | 89, 95, 93, 96, 115 | ltletrd 8342 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) →
(abs‘(𝑥 − 𝐵)) < 𝐺) |
117 | 73, 116 | jca 304 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝐺)) |
118 | | limccnp2lem.gj |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝐺) → (abs‘(𝑆 − 𝐷)) < 𝐿)) |
119 | 118 | r19.21bi 2558 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝐺) → (abs‘(𝑆 − 𝐷)) < 𝐿)) |
120 | 50, 117, 119 | sylc 62 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) →
(abs‘(𝑆 − 𝐷)) < 𝐿) |
121 | 113, 120 | eqbrtrd 4011 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → (𝐷((abs ∘ − ) ↾
(𝑌 × 𝑌))𝑆) < 𝐿) |
122 | 104, 121 | jca 304 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → ((𝐶((abs ∘ − ) ↾
(𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆) < 𝐿)) |
123 | | oveq2 5861 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) = (𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅)) |
124 | 123 | breq1d 3999 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → ((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ↔ (𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿)) |
125 | 124 | anbi1d 462 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) ↔ ((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿))) |
126 | | oveq1 5860 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑟𝐻𝑠) = (𝑅𝐻𝑠)) |
127 | 126 | oveq2d 5869 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) = ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑠))) |
128 | 127 | breq1d 3999 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸 ↔ ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑠)) < 𝐸)) |
129 | 125, 128 | imbi12d 233 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ((((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸) ↔ (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑠)) < 𝐸))) |
130 | | oveq2 5861 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) = (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆)) |
131 | 130 | breq1d 3999 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → ((𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿 ↔ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆) < 𝐿)) |
132 | 131 | anbi2d 461 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) ↔ ((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆) < 𝐿))) |
133 | | oveq2 5861 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (𝑅𝐻𝑠) = (𝑅𝐻𝑆)) |
134 | 133 | oveq2d 5869 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑠)) = ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆))) |
135 | 134 | breq1d 3999 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑠)) < 𝐸 ↔ ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) < 𝐸)) |
136 | 132, 135 | imbi12d 233 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → ((((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑠)) < 𝐸) ↔ (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) < 𝐸))) |
137 | 129, 136 | rspc2v 2847 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) → (∀𝑟 ∈ 𝑋 ∀𝑠 ∈ 𝑌 (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑟) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑠) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑟𝐻𝑠)) < 𝐸) → (((𝐶((abs ∘ − ) ↾ (𝑋 × 𝑋))𝑅) < 𝐿 ∧ (𝐷((abs ∘ − ) ↾ (𝑌 × 𝑌))𝑆) < 𝐿) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) < 𝐸))) |
138 | 61, 63, 122, 137 | syl3c 63 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) → ((𝐶𝐻𝐷)(abs ∘ − )(𝑅𝐻𝑆)) < 𝐸) |
139 | 60, 138 | eqbrtrrd 4013 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) →
(abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸) |
140 | 139 | exp31 362 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 → ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < )) →
(abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸))) |
141 | 5, 140 | ralrimi 2541 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < )) →
(abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸)) |
142 | | breq2 3993 |
. . . 4
⊢ (𝑑 = inf({𝐹, 𝐺}, ℝ, < ) → ((abs‘(𝑥 − 𝐵)) < 𝑑 ↔ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < ))) |
143 | 142 | anbi2d 461 |
. . 3
⊢ (𝑑 = inf({𝐹, 𝐺}, ℝ, < ) → ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝑑) ↔ (𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < )))) |
144 | 143 | rspceaimv 2842 |
. 2
⊢
((inf({𝐹, 𝐺}, ℝ, < ) ∈
ℝ+ ∧ ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < inf({𝐹, 𝐺}, ℝ, < )) →
(abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸)) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝑑) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸)) |
145 | 4, 141, 144 | syl2anc 409 |
1
⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ 𝐴 ((𝑥 # 𝐵 ∧ (abs‘(𝑥 − 𝐵)) < 𝑑) → (abs‘((𝑅𝐻𝑆) − (𝐶𝐻𝐷))) < 𝐸)) |