Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sbthom GIF version

Theorem sbthom 15670
Description: Schroeder-Bernstein is not possible even for ω. We know by exmidsbth 15668 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is ω? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
sbthom ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → EXMID)

Proof of Theorem sbthom
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 4221 . . . . . . . . . . 11 {∅} ∈ V
21ssex 4170 . . . . . . . . . 10 (𝑦 ⊆ {∅} → 𝑦 ∈ V)
32adantl 277 . . . . . . . . 9 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ V)
4 omex 4629 . . . . . . . . 9 ω ∈ V
5 djuex 7109 . . . . . . . . 9 ((𝑦 ∈ V ∧ ω ∈ V) → (𝑦 ⊔ ω) ∈ V)
63, 4, 5sylancl 413 . . . . . . . 8 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → (𝑦 ⊔ ω) ∈ V)
7 simpll 527 . . . . . . . 8 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω))
8 ssdomg 6837 . . . . . . . . . . . 12 ({∅} ∈ V → (𝑦 ⊆ {∅} → 𝑦 ≼ {∅}))
91, 8ax-mp 5 . . . . . . . . . . 11 (𝑦 ⊆ {∅} → 𝑦 ≼ {∅})
10 domrefg 6826 . . . . . . . . . . . . . 14 (ω ∈ V → ω ≼ ω)
114, 10ax-mp 5 . . . . . . . . . . . . 13 ω ≼ ω
12 djudom 7159 . . . . . . . . . . . . 13 ((𝑦 ≼ {∅} ∧ ω ≼ ω) → (𝑦 ⊔ ω) ≼ ({∅} ⊔ ω))
1311, 12mpan2 425 . . . . . . . . . . . 12 (𝑦 ≼ {∅} → (𝑦 ⊔ ω) ≼ ({∅} ⊔ ω))
14 df1o2 6487 . . . . . . . . . . . . 13 1o = {∅}
15 djueq1 7106 . . . . . . . . . . . . 13 (1o = {∅} → (1o ⊔ ω) = ({∅} ⊔ ω))
1614, 15ax-mp 5 . . . . . . . . . . . 12 (1o ⊔ ω) = ({∅} ⊔ ω)
1713, 16breqtrrdi 4075 . . . . . . . . . . 11 (𝑦 ≼ {∅} → (𝑦 ⊔ ω) ≼ (1o ⊔ ω))
18 1onn 6578 . . . . . . . . . . . . . 14 1o ∈ ω
19 endjusym 7162 . . . . . . . . . . . . . 14 ((ω ∈ V ∧ 1o ∈ ω) → (ω ⊔ 1o) ≈ (1o ⊔ ω))
204, 18, 19mp2an 426 . . . . . . . . . . . . 13 (ω ⊔ 1o) ≈ (1o ⊔ ω)
21 omp1eom 7161 . . . . . . . . . . . . 13 (ω ⊔ 1o) ≈ ω
2220, 21entr3i 6847 . . . . . . . . . . . 12 (1o ⊔ ω) ≈ ω
23 domentr 6850 . . . . . . . . . . . 12 (((𝑦 ⊔ ω) ≼ (1o ⊔ ω) ∧ (1o ⊔ ω) ≈ ω) → (𝑦 ⊔ ω) ≼ ω)
2422, 23mpan2 425 . . . . . . . . . . 11 ((𝑦 ⊔ ω) ≼ (1o ⊔ ω) → (𝑦 ⊔ ω) ≼ ω)
259, 17, 243syl 17 . . . . . . . . . 10 (𝑦 ⊆ {∅} → (𝑦 ⊔ ω) ≼ ω)
2625adantl 277 . . . . . . . . 9 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → (𝑦 ⊔ ω) ≼ ω)
27 djudomr 7287 . . . . . . . . . 10 ((𝑦 ∈ V ∧ ω ∈ V) → ω ≼ (𝑦 ⊔ ω))
283, 4, 27sylancl 413 . . . . . . . . 9 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ω ≼ (𝑦 ⊔ ω))
2926, 28jca 306 . . . . . . . 8 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ((𝑦 ⊔ ω) ≼ ω ∧ ω ≼ (𝑦 ⊔ ω)))
30 breq1 4036 . . . . . . . . . . 11 (𝑥 = (𝑦 ⊔ ω) → (𝑥 ≼ ω ↔ (𝑦 ⊔ ω) ≼ ω))
31 breq2 4037 . . . . . . . . . . 11 (𝑥 = (𝑦 ⊔ ω) → (ω ≼ 𝑥 ↔ ω ≼ (𝑦 ⊔ ω)))
3230, 31anbi12d 473 . . . . . . . . . 10 (𝑥 = (𝑦 ⊔ ω) → ((𝑥 ≼ ω ∧ ω ≼ 𝑥) ↔ ((𝑦 ⊔ ω) ≼ ω ∧ ω ≼ (𝑦 ⊔ ω))))
33 breq1 4036 . . . . . . . . . 10 (𝑥 = (𝑦 ⊔ ω) → (𝑥 ≈ ω ↔ (𝑦 ⊔ ω) ≈ ω))
3432, 33imbi12d 234 . . . . . . . . 9 (𝑥 = (𝑦 ⊔ ω) → (((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ↔ (((𝑦 ⊔ ω) ≼ ω ∧ ω ≼ (𝑦 ⊔ ω)) → (𝑦 ⊔ ω) ≈ ω)))
3534spcgv 2851 . . . . . . . 8 ((𝑦 ⊔ ω) ∈ V → (∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) → (((𝑦 ⊔ ω) ≼ ω ∧ ω ≼ (𝑦 ⊔ ω)) → (𝑦 ⊔ ω) ≈ ω)))
366, 7, 29, 35syl3c 63 . . . . . . 7 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → (𝑦 ⊔ ω) ≈ ω)
3736ensymd 6842 . . . . . 6 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ω ≈ (𝑦 ⊔ ω))
38 bren 6806 . . . . . 6 (ω ≈ (𝑦 ⊔ ω) ↔ ∃𝑓 𝑓:ω–1-1-onto→(𝑦 ⊔ ω))
3937, 38sylib 122 . . . . 5 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ∃𝑓 𝑓:ω–1-1-onto→(𝑦 ⊔ ω))
40 simpllr 534 . . . . . 6 ((((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → ω ∈ Omni)
41 simplr 528 . . . . . 6 ((((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → 𝑦 ⊆ {∅})
42 simpr 110 . . . . . 6 ((((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → 𝑓:ω–1-1-onto→(𝑦 ⊔ ω))
4340, 41, 42sbthomlem 15669 . . . . 5 ((((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → (𝑦 = ∅ ∨ 𝑦 = {∅}))
4439, 43exlimddv 1913 . . . 4 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → (𝑦 = ∅ ∨ 𝑦 = {∅}))
4544ex 115 . . 3 ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → (𝑦 ⊆ {∅} → (𝑦 = ∅ ∨ 𝑦 = {∅})))
4645alrimiv 1888 . 2 ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → ∀𝑦(𝑦 ⊆ {∅} → (𝑦 = ∅ ∨ 𝑦 = {∅})))
47 exmid01 4231 . 2 (EXMID ↔ ∀𝑦(𝑦 ⊆ {∅} → (𝑦 = ∅ ∨ 𝑦 = {∅})))
4846, 47sylibr 134 1 ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → EXMID)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  wal 1362   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  wss 3157  c0 3450  {csn 3622   class class class wbr 4033  EXMIDwem 4227  ωcom 4626  1-1-ontowf1o 5257  1oc1o 6467  cen 6797  cdom 6798  cdju 7103  Omnicomni 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-exmid 4228  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-1o 6474  df-2o 6475  df-er 6592  df-map 6709  df-en 6800  df-dom 6801  df-dju 7104  df-inl 7113  df-inr 7114  df-case 7150  df-omni 7201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator