Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sbthom GIF version

Theorem sbthom 14058
Description: Schroeder-Bernstein is not possible even for ω. We know by exmidsbth 14056 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is ω? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
sbthom ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → EXMID)

Proof of Theorem sbthom
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 4174 . . . . . . . . . . 11 {∅} ∈ V
21ssex 4126 . . . . . . . . . 10 (𝑦 ⊆ {∅} → 𝑦 ∈ V)
32adantl 275 . . . . . . . . 9 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ V)
4 omex 4577 . . . . . . . . 9 ω ∈ V
5 djuex 7020 . . . . . . . . 9 ((𝑦 ∈ V ∧ ω ∈ V) → (𝑦 ⊔ ω) ∈ V)
63, 4, 5sylancl 411 . . . . . . . 8 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → (𝑦 ⊔ ω) ∈ V)
7 simpll 524 . . . . . . . 8 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω))
8 ssdomg 6756 . . . . . . . . . . . 12 ({∅} ∈ V → (𝑦 ⊆ {∅} → 𝑦 ≼ {∅}))
91, 8ax-mp 5 . . . . . . . . . . 11 (𝑦 ⊆ {∅} → 𝑦 ≼ {∅})
10 domrefg 6745 . . . . . . . . . . . . . 14 (ω ∈ V → ω ≼ ω)
114, 10ax-mp 5 . . . . . . . . . . . . 13 ω ≼ ω
12 djudom 7070 . . . . . . . . . . . . 13 ((𝑦 ≼ {∅} ∧ ω ≼ ω) → (𝑦 ⊔ ω) ≼ ({∅} ⊔ ω))
1311, 12mpan2 423 . . . . . . . . . . . 12 (𝑦 ≼ {∅} → (𝑦 ⊔ ω) ≼ ({∅} ⊔ ω))
14 df1o2 6408 . . . . . . . . . . . . 13 1o = {∅}
15 djueq1 7017 . . . . . . . . . . . . 13 (1o = {∅} → (1o ⊔ ω) = ({∅} ⊔ ω))
1614, 15ax-mp 5 . . . . . . . . . . . 12 (1o ⊔ ω) = ({∅} ⊔ ω)
1713, 16breqtrrdi 4031 . . . . . . . . . . 11 (𝑦 ≼ {∅} → (𝑦 ⊔ ω) ≼ (1o ⊔ ω))
18 1onn 6499 . . . . . . . . . . . . . 14 1o ∈ ω
19 endjusym 7073 . . . . . . . . . . . . . 14 ((ω ∈ V ∧ 1o ∈ ω) → (ω ⊔ 1o) ≈ (1o ⊔ ω))
204, 18, 19mp2an 424 . . . . . . . . . . . . 13 (ω ⊔ 1o) ≈ (1o ⊔ ω)
21 omp1eom 7072 . . . . . . . . . . . . 13 (ω ⊔ 1o) ≈ ω
2220, 21entr3i 6766 . . . . . . . . . . . 12 (1o ⊔ ω) ≈ ω
23 domentr 6769 . . . . . . . . . . . 12 (((𝑦 ⊔ ω) ≼ (1o ⊔ ω) ∧ (1o ⊔ ω) ≈ ω) → (𝑦 ⊔ ω) ≼ ω)
2422, 23mpan2 423 . . . . . . . . . . 11 ((𝑦 ⊔ ω) ≼ (1o ⊔ ω) → (𝑦 ⊔ ω) ≼ ω)
259, 17, 243syl 17 . . . . . . . . . 10 (𝑦 ⊆ {∅} → (𝑦 ⊔ ω) ≼ ω)
2625adantl 275 . . . . . . . . 9 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → (𝑦 ⊔ ω) ≼ ω)
27 djudomr 7197 . . . . . . . . . 10 ((𝑦 ∈ V ∧ ω ∈ V) → ω ≼ (𝑦 ⊔ ω))
283, 4, 27sylancl 411 . . . . . . . . 9 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ω ≼ (𝑦 ⊔ ω))
2926, 28jca 304 . . . . . . . 8 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ((𝑦 ⊔ ω) ≼ ω ∧ ω ≼ (𝑦 ⊔ ω)))
30 breq1 3992 . . . . . . . . . . 11 (𝑥 = (𝑦 ⊔ ω) → (𝑥 ≼ ω ↔ (𝑦 ⊔ ω) ≼ ω))
31 breq2 3993 . . . . . . . . . . 11 (𝑥 = (𝑦 ⊔ ω) → (ω ≼ 𝑥 ↔ ω ≼ (𝑦 ⊔ ω)))
3230, 31anbi12d 470 . . . . . . . . . 10 (𝑥 = (𝑦 ⊔ ω) → ((𝑥 ≼ ω ∧ ω ≼ 𝑥) ↔ ((𝑦 ⊔ ω) ≼ ω ∧ ω ≼ (𝑦 ⊔ ω))))
33 breq1 3992 . . . . . . . . . 10 (𝑥 = (𝑦 ⊔ ω) → (𝑥 ≈ ω ↔ (𝑦 ⊔ ω) ≈ ω))
3432, 33imbi12d 233 . . . . . . . . 9 (𝑥 = (𝑦 ⊔ ω) → (((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ↔ (((𝑦 ⊔ ω) ≼ ω ∧ ω ≼ (𝑦 ⊔ ω)) → (𝑦 ⊔ ω) ≈ ω)))
3534spcgv 2817 . . . . . . . 8 ((𝑦 ⊔ ω) ∈ V → (∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) → (((𝑦 ⊔ ω) ≼ ω ∧ ω ≼ (𝑦 ⊔ ω)) → (𝑦 ⊔ ω) ≈ ω)))
366, 7, 29, 35syl3c 63 . . . . . . 7 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → (𝑦 ⊔ ω) ≈ ω)
3736ensymd 6761 . . . . . 6 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ω ≈ (𝑦 ⊔ ω))
38 bren 6725 . . . . . 6 (ω ≈ (𝑦 ⊔ ω) ↔ ∃𝑓 𝑓:ω–1-1-onto→(𝑦 ⊔ ω))
3937, 38sylib 121 . . . . 5 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ∃𝑓 𝑓:ω–1-1-onto→(𝑦 ⊔ ω))
40 simpllr 529 . . . . . 6 ((((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → ω ∈ Omni)
41 simplr 525 . . . . . 6 ((((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → 𝑦 ⊆ {∅})
42 simpr 109 . . . . . 6 ((((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → 𝑓:ω–1-1-onto→(𝑦 ⊔ ω))
4340, 41, 42sbthomlem 14057 . . . . 5 ((((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → (𝑦 = ∅ ∨ 𝑦 = {∅}))
4439, 43exlimddv 1891 . . . 4 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → (𝑦 = ∅ ∨ 𝑦 = {∅}))
4544ex 114 . . 3 ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → (𝑦 ⊆ {∅} → (𝑦 = ∅ ∨ 𝑦 = {∅})))
4645alrimiv 1867 . 2 ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → ∀𝑦(𝑦 ⊆ {∅} → (𝑦 = ∅ ∨ 𝑦 = {∅})))
47 exmid01 4184 . 2 (EXMID ↔ ∀𝑦(𝑦 ⊆ {∅} → (𝑦 = ∅ ∨ 𝑦 = {∅})))
4846, 47sylibr 133 1 ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → EXMID)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  wal 1346   = wceq 1348  wex 1485  wcel 2141  Vcvv 2730  wss 3121  c0 3414  {csn 3583   class class class wbr 3989  EXMIDwem 4180  ωcom 4574  1-1-ontowf1o 5197  1oc1o 6388  cen 6716  cdom 6717  cdju 7014  Omnicomni 7110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-exmid 4181  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-1o 6395  df-2o 6396  df-er 6513  df-map 6628  df-en 6719  df-dom 6720  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061  df-omni 7111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator