Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sbthom GIF version

Theorem sbthom 13221
Description: Schroeder-Bernstein is not possible even for ω. We know by exmidsbth 13219 that full Schroeder-Bernstein will not be provable but what about the case where one of the sets is ω? That case plus the Limited Principle of Omniscience (LPO) implies excluded middle, so we will not be able to prove it. (Contributed by Mario Carneiro and Jim Kingdon, 10-Jul-2023.)
Assertion
Ref Expression
sbthom ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → EXMID)

Proof of Theorem sbthom
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 p0ex 4112 . . . . . . . . . . 11 {∅} ∈ V
21ssex 4065 . . . . . . . . . 10 (𝑦 ⊆ {∅} → 𝑦 ∈ V)
32adantl 275 . . . . . . . . 9 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → 𝑦 ∈ V)
4 omex 4507 . . . . . . . . 9 ω ∈ V
5 djuex 6928 . . . . . . . . 9 ((𝑦 ∈ V ∧ ω ∈ V) → (𝑦 ⊔ ω) ∈ V)
63, 4, 5sylancl 409 . . . . . . . 8 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → (𝑦 ⊔ ω) ∈ V)
7 simpll 518 . . . . . . . 8 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω))
8 ssdomg 6672 . . . . . . . . . . . 12 ({∅} ∈ V → (𝑦 ⊆ {∅} → 𝑦 ≼ {∅}))
91, 8ax-mp 5 . . . . . . . . . . 11 (𝑦 ⊆ {∅} → 𝑦 ≼ {∅})
10 domrefg 6661 . . . . . . . . . . . . . 14 (ω ∈ V → ω ≼ ω)
114, 10ax-mp 5 . . . . . . . . . . . . 13 ω ≼ ω
12 djudom 6978 . . . . . . . . . . . . 13 ((𝑦 ≼ {∅} ∧ ω ≼ ω) → (𝑦 ⊔ ω) ≼ ({∅} ⊔ ω))
1311, 12mpan2 421 . . . . . . . . . . . 12 (𝑦 ≼ {∅} → (𝑦 ⊔ ω) ≼ ({∅} ⊔ ω))
14 df1o2 6326 . . . . . . . . . . . . 13 1o = {∅}
15 djueq1 6925 . . . . . . . . . . . . 13 (1o = {∅} → (1o ⊔ ω) = ({∅} ⊔ ω))
1614, 15ax-mp 5 . . . . . . . . . . . 12 (1o ⊔ ω) = ({∅} ⊔ ω)
1713, 16breqtrrdi 3970 . . . . . . . . . . 11 (𝑦 ≼ {∅} → (𝑦 ⊔ ω) ≼ (1o ⊔ ω))
18 1onn 6416 . . . . . . . . . . . . . 14 1o ∈ ω
19 endjusym 6981 . . . . . . . . . . . . . 14 ((ω ∈ V ∧ 1o ∈ ω) → (ω ⊔ 1o) ≈ (1o ⊔ ω))
204, 18, 19mp2an 422 . . . . . . . . . . . . 13 (ω ⊔ 1o) ≈ (1o ⊔ ω)
21 omp1eom 6980 . . . . . . . . . . . . 13 (ω ⊔ 1o) ≈ ω
2220, 21entr3i 6682 . . . . . . . . . . . 12 (1o ⊔ ω) ≈ ω
23 domentr 6685 . . . . . . . . . . . 12 (((𝑦 ⊔ ω) ≼ (1o ⊔ ω) ∧ (1o ⊔ ω) ≈ ω) → (𝑦 ⊔ ω) ≼ ω)
2422, 23mpan2 421 . . . . . . . . . . 11 ((𝑦 ⊔ ω) ≼ (1o ⊔ ω) → (𝑦 ⊔ ω) ≼ ω)
259, 17, 243syl 17 . . . . . . . . . 10 (𝑦 ⊆ {∅} → (𝑦 ⊔ ω) ≼ ω)
2625adantl 275 . . . . . . . . 9 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → (𝑦 ⊔ ω) ≼ ω)
27 djudomr 7076 . . . . . . . . . 10 ((𝑦 ∈ V ∧ ω ∈ V) → ω ≼ (𝑦 ⊔ ω))
283, 4, 27sylancl 409 . . . . . . . . 9 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ω ≼ (𝑦 ⊔ ω))
2926, 28jca 304 . . . . . . . 8 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ((𝑦 ⊔ ω) ≼ ω ∧ ω ≼ (𝑦 ⊔ ω)))
30 breq1 3932 . . . . . . . . . . 11 (𝑥 = (𝑦 ⊔ ω) → (𝑥 ≼ ω ↔ (𝑦 ⊔ ω) ≼ ω))
31 breq2 3933 . . . . . . . . . . 11 (𝑥 = (𝑦 ⊔ ω) → (ω ≼ 𝑥 ↔ ω ≼ (𝑦 ⊔ ω)))
3230, 31anbi12d 464 . . . . . . . . . 10 (𝑥 = (𝑦 ⊔ ω) → ((𝑥 ≼ ω ∧ ω ≼ 𝑥) ↔ ((𝑦 ⊔ ω) ≼ ω ∧ ω ≼ (𝑦 ⊔ ω))))
33 breq1 3932 . . . . . . . . . 10 (𝑥 = (𝑦 ⊔ ω) → (𝑥 ≈ ω ↔ (𝑦 ⊔ ω) ≈ ω))
3432, 33imbi12d 233 . . . . . . . . 9 (𝑥 = (𝑦 ⊔ ω) → (((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ↔ (((𝑦 ⊔ ω) ≼ ω ∧ ω ≼ (𝑦 ⊔ ω)) → (𝑦 ⊔ ω) ≈ ω)))
3534spcgv 2773 . . . . . . . 8 ((𝑦 ⊔ ω) ∈ V → (∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) → (((𝑦 ⊔ ω) ≼ ω ∧ ω ≼ (𝑦 ⊔ ω)) → (𝑦 ⊔ ω) ≈ ω)))
366, 7, 29, 35syl3c 63 . . . . . . 7 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → (𝑦 ⊔ ω) ≈ ω)
3736ensymd 6677 . . . . . 6 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ω ≈ (𝑦 ⊔ ω))
38 bren 6641 . . . . . 6 (ω ≈ (𝑦 ⊔ ω) ↔ ∃𝑓 𝑓:ω–1-1-onto→(𝑦 ⊔ ω))
3937, 38sylib 121 . . . . 5 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → ∃𝑓 𝑓:ω–1-1-onto→(𝑦 ⊔ ω))
40 simpllr 523 . . . . . 6 ((((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → ω ∈ Omni)
41 simplr 519 . . . . . 6 ((((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → 𝑦 ⊆ {∅})
42 simpr 109 . . . . . 6 ((((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → 𝑓:ω–1-1-onto→(𝑦 ⊔ ω))
4340, 41, 42sbthomlem 13220 . . . . 5 ((((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → (𝑦 = ∅ ∨ 𝑦 = {∅}))
4439, 43exlimddv 1870 . . . 4 (((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) ∧ 𝑦 ⊆ {∅}) → (𝑦 = ∅ ∨ 𝑦 = {∅}))
4544ex 114 . . 3 ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → (𝑦 ⊆ {∅} → (𝑦 = ∅ ∨ 𝑦 = {∅})))
4645alrimiv 1846 . 2 ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → ∀𝑦(𝑦 ⊆ {∅} → (𝑦 = ∅ ∨ 𝑦 = {∅})))
47 exmid01 4121 . 2 (EXMID ↔ ∀𝑦(𝑦 ⊆ {∅} → (𝑦 = ∅ ∨ 𝑦 = {∅})))
4846, 47sylibr 133 1 ((∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω) ∧ ω ∈ Omni) → EXMID)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 697  wal 1329   = wceq 1331  wex 1468  wcel 1480  Vcvv 2686  wss 3071  c0 3363  {csn 3527   class class class wbr 3929  EXMIDwem 4118  ωcom 4504  1-1-ontowf1o 5122  1oc1o 6306  cen 6632  cdom 6633  cdju 6922  Omnicomni 7004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-exmid 4119  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-1o 6313  df-2o 6314  df-er 6429  df-map 6544  df-en 6635  df-dom 6636  df-dju 6923  df-inl 6932  df-inr 6933  df-case 6969  df-omni 7006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator