| Step | Hyp | Ref
| Expression |
| 1 | | p0ex 4221 |
. . . . . . . . . . 11
⊢ {∅}
∈ V |
| 2 | 1 | ssex 4170 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ {∅} → 𝑦 ∈ V) |
| 3 | 2 | adantl 277 |
. . . . . . . . 9
⊢
(((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) → 𝑦
∈ V) |
| 4 | | omex 4629 |
. . . . . . . . 9
⊢ ω
∈ V |
| 5 | | djuex 7109 |
. . . . . . . . 9
⊢ ((𝑦 ∈ V ∧ ω ∈
V) → (𝑦 ⊔
ω) ∈ V) |
| 6 | 3, 4, 5 | sylancl 413 |
. . . . . . . 8
⊢
(((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) → (𝑦 ⊔ ω) ∈ V) |
| 7 | | simpll 527 |
. . . . . . . 8
⊢
(((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) → ∀𝑥((𝑥 ≼ ω ∧ ω ≼ 𝑥) → 𝑥 ≈ ω)) |
| 8 | | ssdomg 6837 |
. . . . . . . . . . . 12
⊢
({∅} ∈ V → (𝑦 ⊆ {∅} → 𝑦 ≼ {∅})) |
| 9 | 1, 8 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑦 ⊆ {∅} → 𝑦 ≼
{∅}) |
| 10 | | domrefg 6826 |
. . . . . . . . . . . . . 14
⊢ (ω
∈ V → ω ≼ ω) |
| 11 | 4, 10 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ω
≼ ω |
| 12 | | djudom 7159 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ≼ {∅} ∧ ω
≼ ω) → (𝑦
⊔ ω) ≼ ({∅} ⊔ ω)) |
| 13 | 11, 12 | mpan2 425 |
. . . . . . . . . . . 12
⊢ (𝑦 ≼ {∅} → (𝑦 ⊔ ω) ≼
({∅} ⊔ ω)) |
| 14 | | df1o2 6487 |
. . . . . . . . . . . . 13
⊢
1o = {∅} |
| 15 | | djueq1 7106 |
. . . . . . . . . . . . 13
⊢
(1o = {∅} → (1o ⊔ ω) =
({∅} ⊔ ω)) |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(1o ⊔ ω) = ({∅} ⊔
ω) |
| 17 | 13, 16 | breqtrrdi 4075 |
. . . . . . . . . . 11
⊢ (𝑦 ≼ {∅} → (𝑦 ⊔ ω) ≼
(1o ⊔ ω)) |
| 18 | | 1onn 6578 |
. . . . . . . . . . . . . 14
⊢
1o ∈ ω |
| 19 | | endjusym 7162 |
. . . . . . . . . . . . . 14
⊢ ((ω
∈ V ∧ 1o ∈ ω) → (ω ⊔
1o) ≈ (1o ⊔ ω)) |
| 20 | 4, 18, 19 | mp2an 426 |
. . . . . . . . . . . . 13
⊢ (ω
⊔ 1o) ≈ (1o ⊔
ω) |
| 21 | | omp1eom 7161 |
. . . . . . . . . . . . 13
⊢ (ω
⊔ 1o) ≈ ω |
| 22 | 20, 21 | entr3i 6847 |
. . . . . . . . . . . 12
⊢
(1o ⊔ ω) ≈ ω |
| 23 | | domentr 6850 |
. . . . . . . . . . . 12
⊢ (((𝑦 ⊔ ω) ≼
(1o ⊔ ω) ∧ (1o ⊔ ω) ≈
ω) → (𝑦 ⊔
ω) ≼ ω) |
| 24 | 22, 23 | mpan2 425 |
. . . . . . . . . . 11
⊢ ((𝑦 ⊔ ω) ≼
(1o ⊔ ω) → (𝑦 ⊔ ω) ≼
ω) |
| 25 | 9, 17, 24 | 3syl 17 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ {∅} → (𝑦 ⊔ ω) ≼
ω) |
| 26 | 25 | adantl 277 |
. . . . . . . . 9
⊢
(((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) → (𝑦 ⊔ ω) ≼
ω) |
| 27 | | djudomr 7287 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ V ∧ ω ∈
V) → ω ≼ (𝑦 ⊔ ω)) |
| 28 | 3, 4, 27 | sylancl 413 |
. . . . . . . . 9
⊢
(((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) → ω ≼ (𝑦 ⊔ ω)) |
| 29 | 26, 28 | jca 306 |
. . . . . . . 8
⊢
(((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) → ((𝑦 ⊔ ω) ≼ ω ∧
ω ≼ (𝑦 ⊔
ω))) |
| 30 | | breq1 4036 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 ⊔ ω) → (𝑥 ≼ ω ↔ (𝑦 ⊔ ω) ≼
ω)) |
| 31 | | breq2 4037 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 ⊔ ω) → (ω ≼
𝑥 ↔ ω ≼
(𝑦 ⊔
ω))) |
| 32 | 30, 31 | anbi12d 473 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 ⊔ ω) → ((𝑥 ≼ ω ∧ ω
≼ 𝑥) ↔ ((𝑦 ⊔ ω) ≼
ω ∧ ω ≼ (𝑦 ⊔ ω)))) |
| 33 | | breq1 4036 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 ⊔ ω) → (𝑥 ≈ ω ↔ (𝑦 ⊔ ω) ≈
ω)) |
| 34 | 32, 33 | imbi12d 234 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ⊔ ω) → (((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ↔
(((𝑦 ⊔ ω)
≼ ω ∧ ω ≼ (𝑦 ⊔ ω)) → (𝑦 ⊔ ω) ≈
ω))) |
| 35 | 34 | spcgv 2851 |
. . . . . . . 8
⊢ ((𝑦 ⊔ ω) ∈ V
→ (∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) →
(((𝑦 ⊔ ω)
≼ ω ∧ ω ≼ (𝑦 ⊔ ω)) → (𝑦 ⊔ ω) ≈
ω))) |
| 36 | 6, 7, 29, 35 | syl3c 63 |
. . . . . . 7
⊢
(((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) → (𝑦 ⊔ ω) ≈
ω) |
| 37 | 36 | ensymd 6842 |
. . . . . 6
⊢
(((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) → ω ≈ (𝑦 ⊔ ω)) |
| 38 | | bren 6806 |
. . . . . 6
⊢ (ω
≈ (𝑦 ⊔
ω) ↔ ∃𝑓
𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) |
| 39 | 37, 38 | sylib 122 |
. . . . 5
⊢
(((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) → ∃𝑓 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) |
| 40 | | simpllr 534 |
. . . . . 6
⊢
((((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → ω ∈
Omni) |
| 41 | | simplr 528 |
. . . . . 6
⊢
((((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → 𝑦 ⊆ {∅}) |
| 42 | | simpr 110 |
. . . . . 6
⊢
((((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) |
| 43 | 40, 41, 42 | sbthomlem 15669 |
. . . . 5
⊢
((((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) ∧ 𝑓:ω–1-1-onto→(𝑦 ⊔ ω)) → (𝑦 = ∅ ∨ 𝑦 = {∅})) |
| 44 | 39, 43 | exlimddv 1913 |
. . . 4
⊢
(((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) ∧ 𝑦
⊆ {∅}) → (𝑦 = ∅ ∨ 𝑦 = {∅})) |
| 45 | 44 | ex 115 |
. . 3
⊢
((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) → (𝑦
⊆ {∅} → (𝑦
= ∅ ∨ 𝑦 =
{∅}))) |
| 46 | 45 | alrimiv 1888 |
. 2
⊢
((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) → ∀𝑦(𝑦 ⊆ {∅} → (𝑦 = ∅ ∨ 𝑦 = {∅}))) |
| 47 | | exmid01 4231 |
. 2
⊢
(EXMID ↔ ∀𝑦(𝑦 ⊆ {∅} → (𝑦 = ∅ ∨ 𝑦 = {∅}))) |
| 48 | 46, 47 | sylibr 134 |
1
⊢
((∀𝑥((𝑥 ≼ ω ∧ ω
≼ 𝑥) → 𝑥 ≈ ω) ∧ ω
∈ Omni) → EXMID) |