Step | Hyp | Ref
| Expression |
1 | | ssid 3167 |
. 2
⊢ 𝐴 ⊆ 𝐴 |
2 | | tfrlem1.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ On) |
3 | | sseq1 3170 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
4 | | raleq 2665 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
5 | 3, 4 | imbi12d 233 |
. . . . 5
⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
6 | 5 | imbi2d 229 |
. . . 4
⊢ (𝑦 = 𝐴 → ((𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝜑 → (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
7 | | sseq1 3170 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) |
8 | | raleq 2665 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) |
9 | 7, 8 | imbi12d 233 |
. . . . . 6
⊢ (𝑦 = 𝑧 → ((𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
10 | 9 | imbi2d 229 |
. . . . 5
⊢ (𝑦 = 𝑧 → ((𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝜑 → (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
11 | | r19.21v 2547 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑦 (𝜑 → (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝜑 → ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
12 | | simplll 528 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → 𝜑) |
13 | 12 | adantr 274 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝜑) |
14 | | tfrlem1.2 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
15 | 13, 14 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
16 | 15 | simpld 111 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → Fun 𝐹) |
17 | | funfn 5228 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
18 | 16, 17 | sylib 121 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐹 Fn dom 𝐹) |
19 | | simpllr 529 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → 𝑦 ∈ On) |
20 | | eloni 4360 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ On → Ord 𝑦) |
21 | 19, 20 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → Ord 𝑦) |
22 | | ordelss 4364 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Ord
𝑦 ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ 𝑦) |
23 | 21, 22 | sylan 281 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ 𝑦) |
24 | | simplr 525 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑦 ⊆ 𝐴) |
25 | 23, 24 | sstrd 3157 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ 𝐴) |
26 | 15 | simprd 113 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐴 ⊆ dom 𝐹) |
27 | 25, 26 | sstrd 3157 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ dom 𝐹) |
28 | | fnssres 5311 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 Fn dom 𝐹 ∧ 𝑤 ⊆ dom 𝐹) → (𝐹 ↾ 𝑤) Fn 𝑤) |
29 | 18, 27, 28 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹 ↾ 𝑤) Fn 𝑤) |
30 | | tfrlem1.3 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (Fun 𝐺 ∧ 𝐴 ⊆ dom 𝐺)) |
31 | 13, 30 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (Fun 𝐺 ∧ 𝐴 ⊆ dom 𝐺)) |
32 | 31 | simpld 111 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → Fun 𝐺) |
33 | | funfn 5228 |
. . . . . . . . . . . . . . . 16
⊢ (Fun
𝐺 ↔ 𝐺 Fn dom 𝐺) |
34 | 32, 33 | sylib 121 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐺 Fn dom 𝐺) |
35 | 31 | simprd 113 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐴 ⊆ dom 𝐺) |
36 | 25, 35 | sstrd 3157 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ dom 𝐺) |
37 | | fnssres 5311 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 Fn dom 𝐺 ∧ 𝑤 ⊆ dom 𝐺) → (𝐺 ↾ 𝑤) Fn 𝑤) |
38 | 34, 36, 37 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐺 ↾ 𝑤) Fn 𝑤) |
39 | | fveq2 5496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑢 → (𝐹‘𝑥) = (𝐹‘𝑢)) |
40 | | fveq2 5496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑢 → (𝐺‘𝑥) = (𝐺‘𝑢)) |
41 | 39, 40 | eqeq12d 2185 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑢 → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐹‘𝑢) = (𝐺‘𝑢))) |
42 | | simplr 525 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → 𝑤 ∈ 𝑦) |
43 | | simplr 525 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) |
44 | 43 | ad2antrr 485 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) |
45 | 25 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → 𝑤 ⊆ 𝐴) |
46 | | sseq1 3170 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑤 → (𝑧 ⊆ 𝐴 ↔ 𝑤 ⊆ 𝐴)) |
47 | | raleq 2665 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑤 → (∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥))) |
48 | 46, 47 | imbi12d 233 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑤 → ((𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝑤 ⊆ 𝐴 → ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
49 | 48 | rspcv 2830 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ 𝑦 → (∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)) → (𝑤 ⊆ 𝐴 → ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
50 | 42, 44, 45, 49 | syl3c 63 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥)) |
51 | | simpr 109 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → 𝑢 ∈ 𝑤) |
52 | 41, 50, 51 | rspcdva 2839 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → (𝐹‘𝑢) = (𝐺‘𝑢)) |
53 | | fvres 5520 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ 𝑤 → ((𝐹 ↾ 𝑤)‘𝑢) = (𝐹‘𝑢)) |
54 | 53 | adantl 275 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ((𝐹 ↾ 𝑤)‘𝑢) = (𝐹‘𝑢)) |
55 | | fvres 5520 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ 𝑤 → ((𝐺 ↾ 𝑤)‘𝑢) = (𝐺‘𝑢)) |
56 | 55 | adantl 275 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ((𝐺 ↾ 𝑤)‘𝑢) = (𝐺‘𝑢)) |
57 | 52, 54, 56 | 3eqtr4d 2213 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ((𝐹 ↾ 𝑤)‘𝑢) = ((𝐺 ↾ 𝑤)‘𝑢)) |
58 | 29, 38, 57 | eqfnfvd 5596 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹 ↾ 𝑤) = (𝐺 ↾ 𝑤)) |
59 | 58 | fveq2d 5500 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐵‘(𝐹 ↾ 𝑤)) = (𝐵‘(𝐺 ↾ 𝑤))) |
60 | | fveq2 5496 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
61 | | reseq2 4886 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → (𝐹 ↾ 𝑥) = (𝐹 ↾ 𝑤)) |
62 | 61 | fveq2d 5500 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝐵‘(𝐹 ↾ 𝑥)) = (𝐵‘(𝐹 ↾ 𝑤))) |
63 | 60, 62 | eqeq12d 2185 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥)) ↔ (𝐹‘𝑤) = (𝐵‘(𝐹 ↾ 𝑤)))) |
64 | | tfrlem1.4 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥))) |
65 | 13, 64 | syl 14 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥))) |
66 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ 𝐴) |
67 | 66 | sselda 3147 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ∈ 𝐴) |
68 | 63, 65, 67 | rspcdva 2839 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹‘𝑤) = (𝐵‘(𝐹 ↾ 𝑤))) |
69 | | fveq2 5496 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝐺‘𝑥) = (𝐺‘𝑤)) |
70 | | reseq2 4886 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → (𝐺 ↾ 𝑥) = (𝐺 ↾ 𝑤)) |
71 | 70 | fveq2d 5500 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝐵‘(𝐺 ↾ 𝑥)) = (𝐵‘(𝐺 ↾ 𝑤))) |
72 | 69, 71 | eqeq12d 2185 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → ((𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥)) ↔ (𝐺‘𝑤) = (𝐵‘(𝐺 ↾ 𝑤)))) |
73 | | tfrlem1.5 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥))) |
74 | 13, 73 | syl 14 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥))) |
75 | 72, 74, 67 | rspcdva 2839 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐺‘𝑤) = (𝐵‘(𝐺 ↾ 𝑤))) |
76 | 59, 68, 75 | 3eqtr4d 2213 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹‘𝑤) = (𝐺‘𝑤)) |
77 | 76 | ralrimiva 2543 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → ∀𝑤 ∈ 𝑦 (𝐹‘𝑤) = (𝐺‘𝑤)) |
78 | 60, 69 | eqeq12d 2185 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐹‘𝑤) = (𝐺‘𝑤))) |
79 | 78 | cbvralv 2696 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑦 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑤 ∈ 𝑦 (𝐹‘𝑤) = (𝐺‘𝑤)) |
80 | 77, 79 | sylibr 133 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)) |
81 | 80 | exp31 362 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ On) → (∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)) → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
82 | 81 | expcom 115 |
. . . . . . 7
⊢ (𝑦 ∈ On → (𝜑 → (∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)) → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
83 | 82 | a2d 26 |
. . . . . 6
⊢ (𝑦 ∈ On → ((𝜑 → ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) → (𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
84 | 11, 83 | syl5bi 151 |
. . . . 5
⊢ (𝑦 ∈ On → (∀𝑧 ∈ 𝑦 (𝜑 → (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) → (𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
85 | 10, 84 | tfis2 4569 |
. . . 4
⊢ (𝑦 ∈ On → (𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
86 | 6, 85 | vtoclga 2796 |
. . 3
⊢ (𝐴 ∈ On → (𝜑 → (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
87 | 2, 86 | mpcom 36 |
. 2
⊢ (𝜑 → (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
88 | 1, 87 | mpi 15 |
1
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |