ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem1 GIF version

Theorem tfrlem1 6198
Description: A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlem1.1 (𝜑𝐴 ∈ On)
tfrlem1.2 (𝜑 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
tfrlem1.3 (𝜑 → (Fun 𝐺𝐴 ⊆ dom 𝐺))
tfrlem1.4 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
tfrlem1.5 (𝜑 → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
Assertion
Ref Expression
tfrlem1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfrlem1
Dummy variables 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3112 . 2 𝐴𝐴
2 tfrlem1.1 . . 3 (𝜑𝐴 ∈ On)
3 sseq1 3115 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
4 raleq 2624 . . . . . 6 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
53, 4imbi12d 233 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
65imbi2d 229 . . . 4 (𝑦 = 𝐴 → ((𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))))
7 sseq1 3115 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
8 raleq 2624 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))
97, 8imbi12d 233 . . . . . 6 (𝑦 = 𝑧 → ((𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))))
109imbi2d 229 . . . . 5 (𝑦 = 𝑧 → ((𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))))
11 r19.21v 2507 . . . . . 6 (∀𝑧𝑦 (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))))
12 simplll 522 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → 𝜑)
1312adantr 274 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝜑)
14 tfrlem1.2 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1513, 14syl 14 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1615simpld 111 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → Fun 𝐹)
17 funfn 5148 . . . . . . . . . . . . . . . 16 (Fun 𝐹𝐹 Fn dom 𝐹)
1816, 17sylib 121 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐹 Fn dom 𝐹)
19 simpllr 523 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → 𝑦 ∈ On)
20 eloni 4292 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → Ord 𝑦)
2119, 20syl 14 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → Ord 𝑦)
22 ordelss 4296 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑦𝑤𝑦) → 𝑤𝑦)
2321, 22sylan 281 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝑦)
24 simplr 519 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑦𝐴)
2523, 24sstrd 3102 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝐴)
2615simprd 113 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐴 ⊆ dom 𝐹)
2725, 26sstrd 3102 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤 ⊆ dom 𝐹)
28 fnssres 5231 . . . . . . . . . . . . . . 15 ((𝐹 Fn dom 𝐹𝑤 ⊆ dom 𝐹) → (𝐹𝑤) Fn 𝑤)
2918, 27, 28syl2anc 408 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) Fn 𝑤)
30 tfrlem1.3 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Fun 𝐺𝐴 ⊆ dom 𝐺))
3113, 30syl 14 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (Fun 𝐺𝐴 ⊆ dom 𝐺))
3231simpld 111 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → Fun 𝐺)
33 funfn 5148 . . . . . . . . . . . . . . . 16 (Fun 𝐺𝐺 Fn dom 𝐺)
3432, 33sylib 121 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐺 Fn dom 𝐺)
3531simprd 113 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐴 ⊆ dom 𝐺)
3625, 35sstrd 3102 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤 ⊆ dom 𝐺)
37 fnssres 5231 . . . . . . . . . . . . . . 15 ((𝐺 Fn dom 𝐺𝑤 ⊆ dom 𝐺) → (𝐺𝑤) Fn 𝑤)
3834, 36, 37syl2anc 408 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐺𝑤) Fn 𝑤)
39 fveq2 5414 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
40 fveq2 5414 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → (𝐺𝑥) = (𝐺𝑢))
4139, 40eqeq12d 2152 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝑢) = (𝐺𝑢)))
42 simplr 519 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑤𝑦)
43 simplr 519 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))
4443ad2antrr 479 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))
4525adantr 274 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑤𝐴)
46 sseq1 3115 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
47 raleq 2624 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑤 → (∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥)))
4846, 47imbi12d 233 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑤 → ((𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝑤𝐴 → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥))))
4948rspcv 2780 . . . . . . . . . . . . . . . . 17 (𝑤𝑦 → (∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) → (𝑤𝐴 → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥))))
5042, 44, 45, 49syl3c 63 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥))
51 simpr 109 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑢𝑤)
5241, 50, 51rspcdva 2789 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → (𝐹𝑢) = (𝐺𝑢))
53 fvres 5438 . . . . . . . . . . . . . . . 16 (𝑢𝑤 → ((𝐹𝑤)‘𝑢) = (𝐹𝑢))
5453adantl 275 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐹𝑤)‘𝑢) = (𝐹𝑢))
55 fvres 5438 . . . . . . . . . . . . . . . 16 (𝑢𝑤 → ((𝐺𝑤)‘𝑢) = (𝐺𝑢))
5655adantl 275 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐺𝑤)‘𝑢) = (𝐺𝑢))
5752, 54, 563eqtr4d 2180 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐹𝑤)‘𝑢) = ((𝐺𝑤)‘𝑢))
5829, 38, 57eqfnfvd 5514 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐺𝑤))
5958fveq2d 5418 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐵‘(𝐹𝑤)) = (𝐵‘(𝐺𝑤)))
60 fveq2 5414 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
61 reseq2 4809 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
6261fveq2d 5418 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐵‘(𝐹𝑥)) = (𝐵‘(𝐹𝑤)))
6360, 62eqeq12d 2152 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((𝐹𝑥) = (𝐵‘(𝐹𝑥)) ↔ (𝐹𝑤) = (𝐵‘(𝐹𝑤))))
64 tfrlem1.4 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
6513, 64syl 14 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
66 simpr 109 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → 𝑦𝐴)
6766sselda 3092 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝐴)
6863, 65, 67rspcdva 2789 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐵‘(𝐹𝑤)))
69 fveq2 5414 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
70 reseq2 4809 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
7170fveq2d 5418 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐵‘(𝐺𝑥)) = (𝐵‘(𝐺𝑤)))
7269, 71eqeq12d 2152 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((𝐺𝑥) = (𝐵‘(𝐺𝑥)) ↔ (𝐺𝑤) = (𝐵‘(𝐺𝑤))))
73 tfrlem1.5 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
7413, 73syl 14 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
7572, 74, 67rspcdva 2789 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐺𝑤) = (𝐵‘(𝐺𝑤)))
7659, 68, 753eqtr4d 2180 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐺𝑤))
7776ralrimiva 2503 . . . . . . . . . 10 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → ∀𝑤𝑦 (𝐹𝑤) = (𝐺𝑤))
7860, 69eqeq12d 2152 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝑤) = (𝐺𝑤)))
7978cbvralv 2652 . . . . . . . . . 10 (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑤𝑦 (𝐹𝑤) = (𝐺𝑤))
8077, 79sylibr 133 . . . . . . . . 9 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))
8180exp31 361 . . . . . . . 8 ((𝜑𝑦 ∈ On) → (∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))))
8281expcom 115 . . . . . . 7 (𝑦 ∈ On → (𝜑 → (∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
8382a2d 26 . . . . . 6 (𝑦 ∈ On → ((𝜑 → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) → (𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
8411, 83syl5bi 151 . . . . 5 (𝑦 ∈ On → (∀𝑧𝑦 (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) → (𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
8510, 84tfis2 4494 . . . 4 (𝑦 ∈ On → (𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))))
866, 85vtoclga 2747 . . 3 (𝐴 ∈ On → (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
872, 86mpcom 36 . 2 (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
881, 87mpi 15 1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2414  wss 3066  Ord word 4279  Oncon0 4280  dom cdm 4534  cres 4536  Fun wfun 5112   Fn wfn 5113  cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-res 4546  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126
This theorem is referenced by:  tfrlem5  6204
  Copyright terms: Public domain W3C validator