ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem1 GIF version

Theorem tfrlem1 6323
Description: A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlem1.1 (𝜑𝐴 ∈ On)
tfrlem1.2 (𝜑 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
tfrlem1.3 (𝜑 → (Fun 𝐺𝐴 ⊆ dom 𝐺))
tfrlem1.4 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
tfrlem1.5 (𝜑 → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
Assertion
Ref Expression
tfrlem1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfrlem1
Dummy variables 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3187 . 2 𝐴𝐴
2 tfrlem1.1 . . 3 (𝜑𝐴 ∈ On)
3 sseq1 3190 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
4 raleq 2683 . . . . . 6 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
53, 4imbi12d 234 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
65imbi2d 230 . . . 4 (𝑦 = 𝐴 → ((𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))))
7 sseq1 3190 . . . . . . 7 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
8 raleq 2683 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))
97, 8imbi12d 234 . . . . . 6 (𝑦 = 𝑧 → ((𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))))
109imbi2d 230 . . . . 5 (𝑦 = 𝑧 → ((𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))))
11 r19.21v 2564 . . . . . 6 (∀𝑧𝑦 (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))))
12 simplll 533 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → 𝜑)
1312adantr 276 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝜑)
14 tfrlem1.2 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1513, 14syl 14 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1615simpld 112 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → Fun 𝐹)
17 funfn 5258 . . . . . . . . . . . . . . . 16 (Fun 𝐹𝐹 Fn dom 𝐹)
1816, 17sylib 122 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐹 Fn dom 𝐹)
19 simpllr 534 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → 𝑦 ∈ On)
20 eloni 4387 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → Ord 𝑦)
2119, 20syl 14 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → Ord 𝑦)
22 ordelss 4391 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑦𝑤𝑦) → 𝑤𝑦)
2321, 22sylan 283 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝑦)
24 simplr 528 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑦𝐴)
2523, 24sstrd 3177 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝐴)
2615simprd 114 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐴 ⊆ dom 𝐹)
2725, 26sstrd 3177 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤 ⊆ dom 𝐹)
28 fnssres 5341 . . . . . . . . . . . . . . 15 ((𝐹 Fn dom 𝐹𝑤 ⊆ dom 𝐹) → (𝐹𝑤) Fn 𝑤)
2918, 27, 28syl2anc 411 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) Fn 𝑤)
30 tfrlem1.3 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Fun 𝐺𝐴 ⊆ dom 𝐺))
3113, 30syl 14 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (Fun 𝐺𝐴 ⊆ dom 𝐺))
3231simpld 112 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → Fun 𝐺)
33 funfn 5258 . . . . . . . . . . . . . . . 16 (Fun 𝐺𝐺 Fn dom 𝐺)
3432, 33sylib 122 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐺 Fn dom 𝐺)
3531simprd 114 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐴 ⊆ dom 𝐺)
3625, 35sstrd 3177 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤 ⊆ dom 𝐺)
37 fnssres 5341 . . . . . . . . . . . . . . 15 ((𝐺 Fn dom 𝐺𝑤 ⊆ dom 𝐺) → (𝐺𝑤) Fn 𝑤)
3834, 36, 37syl2anc 411 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐺𝑤) Fn 𝑤)
39 fveq2 5527 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
40 fveq2 5527 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → (𝐺𝑥) = (𝐺𝑢))
4139, 40eqeq12d 2202 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝑢) = (𝐺𝑢)))
42 simplr 528 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑤𝑦)
43 simplr 528 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))
4443ad2antrr 488 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))
4525adantr 276 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑤𝐴)
46 sseq1 3190 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
47 raleq 2683 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑤 → (∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥)))
4846, 47imbi12d 234 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑤 → ((𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝑤𝐴 → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥))))
4948rspcv 2849 . . . . . . . . . . . . . . . . 17 (𝑤𝑦 → (∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) → (𝑤𝐴 → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥))))
5042, 44, 45, 49syl3c 63 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥))
51 simpr 110 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑢𝑤)
5241, 50, 51rspcdva 2858 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → (𝐹𝑢) = (𝐺𝑢))
53 fvres 5551 . . . . . . . . . . . . . . . 16 (𝑢𝑤 → ((𝐹𝑤)‘𝑢) = (𝐹𝑢))
5453adantl 277 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐹𝑤)‘𝑢) = (𝐹𝑢))
55 fvres 5551 . . . . . . . . . . . . . . . 16 (𝑢𝑤 → ((𝐺𝑤)‘𝑢) = (𝐺𝑢))
5655adantl 277 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐺𝑤)‘𝑢) = (𝐺𝑢))
5752, 54, 563eqtr4d 2230 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐹𝑤)‘𝑢) = ((𝐺𝑤)‘𝑢))
5829, 38, 57eqfnfvd 5629 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐺𝑤))
5958fveq2d 5531 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐵‘(𝐹𝑤)) = (𝐵‘(𝐺𝑤)))
60 fveq2 5527 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
61 reseq2 4914 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
6261fveq2d 5531 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐵‘(𝐹𝑥)) = (𝐵‘(𝐹𝑤)))
6360, 62eqeq12d 2202 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((𝐹𝑥) = (𝐵‘(𝐹𝑥)) ↔ (𝐹𝑤) = (𝐵‘(𝐹𝑤))))
64 tfrlem1.4 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
6513, 64syl 14 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
66 simpr 110 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → 𝑦𝐴)
6766sselda 3167 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝐴)
6863, 65, 67rspcdva 2858 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐵‘(𝐹𝑤)))
69 fveq2 5527 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
70 reseq2 4914 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
7170fveq2d 5531 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐵‘(𝐺𝑥)) = (𝐵‘(𝐺𝑤)))
7269, 71eqeq12d 2202 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((𝐺𝑥) = (𝐵‘(𝐺𝑥)) ↔ (𝐺𝑤) = (𝐵‘(𝐺𝑤))))
73 tfrlem1.5 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
7413, 73syl 14 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
7572, 74, 67rspcdva 2858 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐺𝑤) = (𝐵‘(𝐺𝑤)))
7659, 68, 753eqtr4d 2230 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐺𝑤))
7776ralrimiva 2560 . . . . . . . . . 10 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → ∀𝑤𝑦 (𝐹𝑤) = (𝐺𝑤))
7860, 69eqeq12d 2202 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝑤) = (𝐺𝑤)))
7978cbvralv 2715 . . . . . . . . . 10 (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑤𝑦 (𝐹𝑤) = (𝐺𝑤))
8077, 79sylibr 134 . . . . . . . . 9 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))
8180exp31 364 . . . . . . . 8 ((𝜑𝑦 ∈ On) → (∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))))
8281expcom 116 . . . . . . 7 (𝑦 ∈ On → (𝜑 → (∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
8382a2d 26 . . . . . 6 (𝑦 ∈ On → ((𝜑 → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) → (𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
8411, 83biimtrid 152 . . . . 5 (𝑦 ∈ On → (∀𝑧𝑦 (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) → (𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
8510, 84tfis2 4596 . . . 4 (𝑦 ∈ On → (𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))))
866, 85vtoclga 2815 . . 3 (𝐴 ∈ On → (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
872, 86mpcom 36 . 2 (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
881, 87mpi 15 1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158  wral 2465  wss 3141  Ord word 4374  Oncon0 4375  dom cdm 4638  cres 4640  Fun wfun 5222   Fn wfn 5223  cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-setind 4548
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236
This theorem is referenced by:  tfrlem5  6329
  Copyright terms: Public domain W3C validator