ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt12 GIF version

Theorem cnmpt12 14955
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
cnmpt12.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmpt12.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmpt12.c (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
cnmpt12.d ((𝑦 = 𝐴𝑧 = 𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
cnmpt12 (𝜑 → (𝑥𝑋𝐷) ∈ (𝐽 Cn 𝑀))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑦,𝐷,𝑧   𝑥,𝑦   𝜑,𝑥   𝑥,𝐽,𝑦   𝑥,𝑧,𝑀,𝑦   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦,𝑧)   𝐷(𝑥)   𝐽(𝑧)   𝐾(𝑧)   𝐿(𝑧)

Proof of Theorem cnmpt12
StepHypRef Expression
1 cnmptid.j . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt12.k . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 cnmpt11.a . . . . . 6 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
4 cnf2 14873 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋𝑌)
51, 2, 3, 4syl3anc 1271 . . . . 5 (𝜑 → (𝑥𝑋𝐴):𝑋𝑌)
65fvmptelcdm 5787 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
7 cnmpt12.l . . . . . 6 (𝜑𝐿 ∈ (TopOn‘𝑍))
8 cnmpt1t.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
9 cnf2 14873 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥𝑋𝐵):𝑋𝑍)
101, 7, 8, 9syl3anc 1271 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋𝑍)
1110fvmptelcdm 5787 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑍)
126, 11jca 306 . . . . 5 ((𝜑𝑥𝑋) → (𝐴𝑌𝐵𝑍))
13 txtopon 14930 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
142, 7, 13syl2anc 411 . . . . . . . . 9 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)))
15 cnmpt12.c . . . . . . . . . . 11 (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
16 cntop2 14870 . . . . . . . . . . 11 ((𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀) → 𝑀 ∈ Top)
1715, 16syl 14 . . . . . . . . . 10 (𝜑𝑀 ∈ Top)
18 toptopon2 14687 . . . . . . . . . 10 (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘ 𝑀))
1917, 18sylib 122 . . . . . . . . 9 (𝜑𝑀 ∈ (TopOn‘ 𝑀))
20 cnf2 14873 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)) ∧ 𝑀 ∈ (TopOn‘ 𝑀) ∧ (𝑦𝑌, 𝑧𝑍𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) → (𝑦𝑌, 𝑧𝑍𝐶):(𝑌 × 𝑍)⟶ 𝑀)
2114, 19, 15, 20syl3anc 1271 . . . . . . . 8 (𝜑 → (𝑦𝑌, 𝑧𝑍𝐶):(𝑌 × 𝑍)⟶ 𝑀)
22 eqid 2229 . . . . . . . . 9 (𝑦𝑌, 𝑧𝑍𝐶) = (𝑦𝑌, 𝑧𝑍𝐶)
2322fmpo 6345 . . . . . . . 8 (∀𝑦𝑌𝑧𝑍 𝐶 𝑀 ↔ (𝑦𝑌, 𝑧𝑍𝐶):(𝑌 × 𝑍)⟶ 𝑀)
2421, 23sylibr 134 . . . . . . 7 (𝜑 → ∀𝑦𝑌𝑧𝑍 𝐶 𝑀)
25 r2al 2549 . . . . . . 7 (∀𝑦𝑌𝑧𝑍 𝐶 𝑀 ↔ ∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀))
2624, 25sylib 122 . . . . . 6 (𝜑 → ∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀))
2726adantr 276 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀))
28 eleq1 2292 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑌𝐴𝑌))
29 eleq1 2292 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑍𝐵𝑍))
3028, 29bi2anan9 608 . . . . . . 7 ((𝑦 = 𝐴𝑧 = 𝐵) → ((𝑦𝑌𝑧𝑍) ↔ (𝐴𝑌𝐵𝑍)))
31 cnmpt12.d . . . . . . . 8 ((𝑦 = 𝐴𝑧 = 𝐵) → 𝐶 = 𝐷)
3231eleq1d 2298 . . . . . . 7 ((𝑦 = 𝐴𝑧 = 𝐵) → (𝐶 𝑀𝐷 𝑀))
3330, 32imbi12d 234 . . . . . 6 ((𝑦 = 𝐴𝑧 = 𝐵) → (((𝑦𝑌𝑧𝑍) → 𝐶 𝑀) ↔ ((𝐴𝑌𝐵𝑍) → 𝐷 𝑀)))
3433spc2gv 2894 . . . . 5 ((𝐴𝑌𝐵𝑍) → (∀𝑦𝑧((𝑦𝑌𝑧𝑍) → 𝐶 𝑀) → ((𝐴𝑌𝐵𝑍) → 𝐷 𝑀)))
3512, 27, 12, 34syl3c 63 . . . 4 ((𝜑𝑥𝑋) → 𝐷 𝑀)
3631, 22ovmpoga 6133 . . . 4 ((𝐴𝑌𝐵𝑍𝐷 𝑀) → (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵) = 𝐷)
376, 11, 35, 36syl3anc 1271 . . 3 ((𝜑𝑥𝑋) → (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵) = 𝐷)
3837mpteq2dva 4173 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵)) = (𝑥𝑋𝐷))
391, 3, 8, 15cnmpt12f 14954 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐴(𝑦𝑌, 𝑧𝑍𝐶)𝐵)) ∈ (𝐽 Cn 𝑀))
4038, 39eqeltrrd 2307 1 (𝜑 → (𝑥𝑋𝐷) ∈ (𝐽 Cn 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1393   = wceq 1395  wcel 2200  wral 2508   cuni 3887  cmpt 4144   × cxp 4716  wf 5313  cfv 5317  (class class class)co 6000  cmpo 6002  Topctop 14665  TopOnctopon 14678   Cn ccn 14853   ×t ctx 14920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-topgen 13288  df-top 14666  df-topon 14679  df-bases 14711  df-cn 14856  df-tx 14921
This theorem is referenced by:  plycn  15430
  Copyright terms: Public domain W3C validator