Proof of Theorem cnmpt12
| Step | Hyp | Ref
| Expression |
| 1 | | cnmptid.j |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 2 | | cnmpt12.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 3 | | cnmpt11.a |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) |
| 4 | | cnf2 14441 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
| 5 | 1, 2, 3, 4 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶𝑌) |
| 6 | 5 | fvmptelcdm 5715 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
| 7 | | cnmpt12.l |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
| 8 | | cnmpt1t.b |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) |
| 9 | | cnf2 14441 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑍) |
| 10 | 1, 7, 8, 9 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑍) |
| 11 | 10 | fvmptelcdm 5715 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑍) |
| 12 | 6, 11 | jca 306 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍)) |
| 13 | | txtopon 14498 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍))) |
| 14 | 2, 7, 13 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍))) |
| 15 | | cnmpt12.c |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) |
| 16 | | cntop2 14438 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀) → 𝑀 ∈ Top) |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ Top) |
| 18 | | toptopon2 14255 |
. . . . . . . . . 10
⊢ (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘∪ 𝑀)) |
| 19 | 17, 18 | sylib 122 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (TopOn‘∪ 𝑀)) |
| 20 | | cnf2 14441 |
. . . . . . . . 9
⊢ (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑌 × 𝑍)) ∧ 𝑀 ∈ (TopOn‘∪ 𝑀)
∧ (𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶) ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) → (𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶):(𝑌 × 𝑍)⟶∪ 𝑀) |
| 21 | 14, 19, 15, 20 | syl3anc 1249 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶):(𝑌 × 𝑍)⟶∪ 𝑀) |
| 22 | | eqid 2196 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶) = (𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶) |
| 23 | 22 | fmpo 6259 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑌 ∀𝑧 ∈ 𝑍 𝐶 ∈ ∪ 𝑀 ↔ (𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶):(𝑌 × 𝑍)⟶∪ 𝑀) |
| 24 | 21, 23 | sylibr 134 |
. . . . . . 7
⊢ (𝜑 → ∀𝑦 ∈ 𝑌 ∀𝑧 ∈ 𝑍 𝐶 ∈ ∪ 𝑀) |
| 25 | | r2al 2516 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑌 ∀𝑧 ∈ 𝑍 𝐶 ∈ ∪ 𝑀 ↔ ∀𝑦∀𝑧((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) → 𝐶 ∈ ∪ 𝑀)) |
| 26 | 24, 25 | sylib 122 |
. . . . . 6
⊢ (𝜑 → ∀𝑦∀𝑧((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) → 𝐶 ∈ ∪ 𝑀)) |
| 27 | 26 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦∀𝑧((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) → 𝐶 ∈ ∪ 𝑀)) |
| 28 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑌 ↔ 𝐴 ∈ 𝑌)) |
| 29 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝑧 ∈ 𝑍 ↔ 𝐵 ∈ 𝑍)) |
| 30 | 28, 29 | bi2anan9 606 |
. . . . . . 7
⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ↔ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍))) |
| 31 | | cnmpt12.d |
. . . . . . . 8
⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → 𝐶 = 𝐷) |
| 32 | 31 | eleq1d 2265 |
. . . . . . 7
⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → (𝐶 ∈ ∪ 𝑀 ↔ 𝐷 ∈ ∪ 𝑀)) |
| 33 | 30, 32 | imbi12d 234 |
. . . . . 6
⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐵) → (((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) → 𝐶 ∈ ∪ 𝑀) ↔ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍) → 𝐷 ∈ ∪ 𝑀))) |
| 34 | 33 | spc2gv 2855 |
. . . . 5
⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍) → (∀𝑦∀𝑧((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) → 𝐶 ∈ ∪ 𝑀) → ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍) → 𝐷 ∈ ∪ 𝑀))) |
| 35 | 12, 27, 12, 34 | syl3c 63 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷 ∈ ∪ 𝑀) |
| 36 | 31, 22 | ovmpoga 6052 |
. . . 4
⊢ ((𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑍 ∧ 𝐷 ∈ ∪ 𝑀) → (𝐴(𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶)𝐵) = 𝐷) |
| 37 | 6, 11, 35, 36 | syl3anc 1249 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴(𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶)𝐵) = 𝐷) |
| 38 | 37 | mpteq2dva 4123 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶)𝐵)) = (𝑥 ∈ 𝑋 ↦ 𝐷)) |
| 39 | 1, 3, 8, 15 | cnmpt12f 14522 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍 ↦ 𝐶)𝐵)) ∈ (𝐽 Cn 𝑀)) |
| 40 | 38, 39 | eqeltrrd 2274 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐷) ∈ (𝐽 Cn 𝑀)) |