| Step | Hyp | Ref
 | Expression | 
| 1 |   | ltrelpi 7391 | 
. . . . 5
⊢ 
<N ⊆ (N ×
N) | 
| 2 | 1 | brel 4715 | 
. . . 4
⊢ (𝐴 <N
𝐵 → (𝐴 ∈ N ∧ 𝐵 ∈
N)) | 
| 3 | 2 | adantl 277 | 
. . 3
⊢ ((𝜑 ∧ 𝐴 <N 𝐵) → (𝐴 ∈ N ∧ 𝐵 ∈
N)) | 
| 4 |   | caucvgprpr.f | 
. . . . 5
⊢ (𝜑 → 𝐹:N⟶P) | 
| 5 |   | caucvgprpr.cau | 
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) | 
| 6 | 4, 5 | caucvgprprlemcbv 7754 | 
. . . 4
⊢ (𝜑 → ∀𝑎 ∈ N ∀𝑏 ∈ N (𝑎 <N
𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)))) | 
| 7 | 6 | adantr 276 | 
. . 3
⊢ ((𝜑 ∧ 𝐴 <N 𝐵) → ∀𝑎 ∈ N
∀𝑏 ∈
N (𝑎
<N 𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)))) | 
| 8 |   | simpr 110 | 
. . 3
⊢ ((𝜑 ∧ 𝐴 <N 𝐵) → 𝐴 <N 𝐵) | 
| 9 |   | breq1 4036 | 
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑎 <N 𝑏 ↔ 𝐴 <N 𝑏)) | 
| 10 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | 
| 11 |   | opeq1 3808 | 
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝐴 → 〈𝑎, 1o〉 = 〈𝐴,
1o〉) | 
| 12 | 11 | eceq1d 6628 | 
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → [〈𝑎, 1o〉]
~Q = [〈𝐴, 1o〉]
~Q ) | 
| 13 | 12 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 →
(*Q‘[〈𝑎, 1o〉]
~Q ) = (*Q‘[〈𝐴, 1o〉]
~Q )) | 
| 14 | 13 | breq2d 4045 | 
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q ) ↔ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q ))) | 
| 15 | 14 | abbidv 2314 | 
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )} = {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}) | 
| 16 | 13 | breq1d 4043 | 
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 →
((*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢 ↔
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢)) | 
| 17 | 16 | abbidv 2314 | 
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢} = {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}) | 
| 18 | 15, 17 | opeq12d 3816 | 
. . . . . . . 8
⊢ (𝑎 = 𝐴 → 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) | 
| 19 | 18 | oveq2d 5938 | 
. . . . . . 7
⊢ (𝑎 = 𝐴 → ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉)) | 
| 20 | 10, 19 | breq12d 4046 | 
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝐴)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉))) | 
| 21 | 10, 18 | oveq12d 5940 | 
. . . . . . 7
⊢ (𝑎 = 𝐴 → ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉)) | 
| 22 | 21 | breq2d 4045 | 
. . . . . 6
⊢ (𝑎 = 𝐴 → ((𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝑏)<P ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉))) | 
| 23 | 20, 22 | anbi12d 473 | 
. . . . 5
⊢ (𝑎 = 𝐴 → (((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉)) ↔ ((𝐹‘𝐴)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉)))) | 
| 24 | 9, 23 | imbi12d 234 | 
. . . 4
⊢ (𝑎 = 𝐴 → ((𝑎 <N 𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))) ↔ (𝐴 <N 𝑏 → ((𝐹‘𝐴)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉))))) | 
| 25 |   | breq2 4037 | 
. . . . 5
⊢ (𝑏 = 𝐵 → (𝐴 <N 𝑏 ↔ 𝐴 <N 𝐵)) | 
| 26 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) | 
| 27 | 26 | oveq1d 5937 | 
. . . . . . 7
⊢ (𝑏 = 𝐵 → ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉)) | 
| 28 | 27 | breq2d 4045 | 
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐹‘𝐴)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝐴)<P ((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉))) | 
| 29 | 26 | breq1d 4043 | 
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐹‘𝑏)<P ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝐵)<P ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉))) | 
| 30 | 28, 29 | anbi12d 473 | 
. . . . 5
⊢ (𝑏 = 𝐵 → (((𝐹‘𝐴)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉)) ↔ ((𝐹‘𝐴)<P ((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝐵)<P ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉)))) | 
| 31 | 25, 30 | imbi12d 234 | 
. . . 4
⊢ (𝑏 = 𝐵 → ((𝐴 <N 𝑏 → ((𝐹‘𝐴)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉))) ↔ (𝐴 <N 𝐵 → ((𝐹‘𝐴)<P ((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝐵)<P ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉))))) | 
| 32 | 24, 31 | rspc2v 2881 | 
. . 3
⊢ ((𝐴 ∈ N ∧
𝐵 ∈ N)
→ (∀𝑎 ∈
N ∀𝑏
∈ N (𝑎
<N 𝑏 → ((𝐹‘𝑎)<P ((𝐹‘𝑏) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑏)<P ((𝐹‘𝑎) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑎, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑎, 1o〉]
~Q ) <Q 𝑢}〉))) → (𝐴 <N 𝐵 → ((𝐹‘𝐴)<P ((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝐵)<P ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉))))) | 
| 33 | 3, 7, 8, 32 | syl3c 63 | 
. 2
⊢ ((𝜑 ∧ 𝐴 <N 𝐵) → ((𝐹‘𝐴)<P ((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝐵)<P ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉))) | 
| 34 |   | breq1 4036 | 
. . . . . . 7
⊢ (𝑙 = 𝑝 → (𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q ) ↔ 𝑝 <Q
(*Q‘[〈𝐴, 1o〉]
~Q ))) | 
| 35 | 34 | cbvabv 2321 | 
. . . . . 6
⊢ {𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )} = {𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )} | 
| 36 |   | breq2 4037 | 
. . . . . . 7
⊢ (𝑢 = 𝑞 →
((*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢 ↔
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑞)) | 
| 37 | 36 | cbvabv 2321 | 
. . . . . 6
⊢ {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢} = {𝑞 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑞} | 
| 38 | 35, 37 | opeq12i 3813 | 
. . . . 5
⊢
〈{𝑙 ∣
𝑙
<Q (*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉 = 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑞}〉 | 
| 39 | 38 | oveq2i 5933 | 
. . . 4
⊢ ((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑞}〉) | 
| 40 | 39 | breq2i 4041 | 
. . 3
⊢ ((𝐹‘𝐴)<P ((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝐴)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 41 | 38 | oveq2i 5933 | 
. . . 4
⊢ ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) = ((𝐹‘𝐴) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑞}〉) | 
| 42 | 41 | breq2i 4041 | 
. . 3
⊢ ((𝐹‘𝐵)<P ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) ↔ (𝐹‘𝐵)<P ((𝐹‘𝐴) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑞}〉)) | 
| 43 | 40, 42 | anbi12i 460 | 
. 2
⊢ (((𝐹‘𝐴)<P ((𝐹‘𝐵) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝐵)<P ((𝐹‘𝐴) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑢}〉)) ↔ ((𝐹‘𝐴)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (𝐹‘𝐵)<P ((𝐹‘𝐴) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑞}〉))) | 
| 44 | 33, 43 | sylib 122 | 
1
⊢ ((𝜑 ∧ 𝐴 <N 𝐵) → ((𝐹‘𝐴)<P ((𝐹‘𝐵) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑞}〉) ∧ (𝐹‘𝐵)<P ((𝐹‘𝐴) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝐴, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝐴, 1o〉]
~Q ) <Q 𝑞}〉))) |