ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5uzti GIF version

Theorem peano5uzti 9320
Description: Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
Assertion
Ref Expression
peano5uzti (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝑁,𝑥

Proof of Theorem peano5uzti
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq2 3993 . . . . . . . 8 (𝑘 = 𝑛 → (𝑁𝑘𝑁𝑛))
21elrab 2886 . . . . . . 7 (𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘} ↔ (𝑛 ∈ ℤ ∧ 𝑁𝑛))
32anbi2i 454 . . . . . 6 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)))
4 zcn 9217 . . . . . . . . 9 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
54ad2antrl 487 . . . . . . . 8 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → 𝑛 ∈ ℂ)
6 zcn 9217 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 1cnd 7936 . . . . . . . . 9 (𝑁 ∈ ℤ → 1 ∈ ℂ)
86, 7subcld 8230 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ)
9 npcan 8128 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ (𝑁 − 1) ∈ ℂ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) = 𝑛)
105, 8, 9syl2an 287 . . . . . . 7 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) = 𝑛)
11 ax-1cn 7867 . . . . . . . . . . 11 1 ∈ ℂ
12 subsub 8149 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
1311, 12mp3an3 1321 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
145, 6, 13syl2an 287 . . . . . . . . 9 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
15 znn0sub 9277 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁𝑛 ↔ (𝑛𝑁) ∈ ℕ0))
1615biimpa 294 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑁𝑛) → (𝑛𝑁) ∈ ℕ0)
1716anasss 397 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → (𝑛𝑁) ∈ ℕ0)
1817ancoms 266 . . . . . . . . . . 11 (((𝑛 ∈ ℤ ∧ 𝑁𝑛) ∧ 𝑁 ∈ ℤ) → (𝑛𝑁) ∈ ℕ0)
1918adantll 473 . . . . . . . . . 10 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛𝑁) ∈ ℕ0)
20 nn0p1nn 9174 . . . . . . . . . 10 ((𝑛𝑁) ∈ ℕ0 → ((𝑛𝑁) + 1) ∈ ℕ)
2119, 20syl 14 . . . . . . . . 9 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛𝑁) + 1) ∈ ℕ)
2214, 21eqeltrd 2247 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛 − (𝑁 − 1)) ∈ ℕ)
23 simpr 109 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
24 simpll 524 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴))
25 oveq1 5860 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 + (𝑁 − 1)) = (1 + (𝑁 − 1)))
2625eleq1d 2239 . . . . . . . . . . 11 (𝑘 = 1 → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ (1 + (𝑁 − 1)) ∈ 𝐴))
2726imbi2d 229 . . . . . . . . . 10 (𝑘 = 1 → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴)))
2827imbi2d 229 . . . . . . . . 9 (𝑘 = 1 → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴))))
29 oveq1 5860 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑘 + (𝑁 − 1)) = (𝑛 + (𝑁 − 1)))
3029eleq1d 2239 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ (𝑛 + (𝑁 − 1)) ∈ 𝐴))
3130imbi2d 229 . . . . . . . . . 10 (𝑘 = 𝑛 → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴)))
3231imbi2d 229 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴))))
33 oveq1 5860 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝑘 + (𝑁 − 1)) = ((𝑛 + 1) + (𝑁 − 1)))
3433eleq1d 2239 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
3534imbi2d 229 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
3635imbi2d 229 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
37 oveq1 5860 . . . . . . . . . . . 12 (𝑘 = (𝑛 − (𝑁 − 1)) → (𝑘 + (𝑁 − 1)) = ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)))
3837eleq1d 2239 . . . . . . . . . . 11 (𝑘 = (𝑛 − (𝑁 − 1)) → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴))
3938imbi2d 229 . . . . . . . . . 10 (𝑘 = (𝑛 − (𝑁 − 1)) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)))
4039imbi2d 229 . . . . . . . . 9 (𝑘 = (𝑛 − (𝑁 − 1)) → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴))))
41 1cnd 7936 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 1 ∈ ℂ)
426adantr 274 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑁 ∈ ℂ)
4341, 42pncan3d 8233 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (1 + (𝑁 − 1)) = 𝑁)
44 simprl 526 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑁𝐴)
4543, 44eqeltrd 2247 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (1 + (𝑁 − 1)) ∈ 𝐴)
4645ex 114 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴))
47 oveq1 5860 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑛 + (𝑁 − 1)) → (𝑥 + 1) = ((𝑛 + (𝑁 − 1)) + 1))
4847eleq1d 2239 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑛 + (𝑁 − 1)) → ((𝑥 + 1) ∈ 𝐴 ↔ ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
4948rspccv 2831 . . . . . . . . . . . . . . 15 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
5049ad2antll 488 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
51 simpll 524 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑛 ∈ ℕ)
5251nncnd 8892 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑛 ∈ ℂ)
538ad2antlr 486 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (𝑁 − 1) ∈ ℂ)
54 1cnd 7936 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 1 ∈ ℂ)
5552, 53, 54add32d 8087 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) + 1) = ((𝑛 + 1) + (𝑁 − 1)))
5655eleq1d 2239 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴 ↔ ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
5750, 56sylibd 148 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
5857ex 114 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
5958a2d 26 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
6059ex 114 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑁 ∈ ℤ → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
6160a2d 26 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴)) → (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
6228, 32, 36, 40, 46, 61nnind 8894 . . . . . . . 8 ((𝑛 − (𝑁 − 1)) ∈ ℕ → (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)))
6322, 23, 24, 62syl3c 63 . . . . . . 7 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)
6410, 63eqeltrrd 2248 . . . . . 6 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → 𝑛𝐴)
653, 64sylanb 282 . . . . 5 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) ∧ 𝑁 ∈ ℤ) → 𝑛𝐴)
6665expcom 115 . . . 4 (𝑁 ∈ ℤ → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) → 𝑛𝐴))
6766expdimp 257 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘} → 𝑛𝐴))
6867ssrdv 3153 . 2 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴)
6968ex 114 1 (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  {crab 2452  wss 3121   class class class wbr 3989  (class class class)co 5853  cc 7772  1c1 7775   + caddc 7777  cle 7955  cmin 8090  cn 8878  0cn0 9135  cz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213
This theorem is referenced by:  peano5uzi  9321  uzind  9323
  Copyright terms: Public domain W3C validator