ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5uzti GIF version

Theorem peano5uzti 9183
Description: Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
Assertion
Ref Expression
peano5uzti (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝑁,𝑥

Proof of Theorem peano5uzti
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq2 3941 . . . . . . . 8 (𝑘 = 𝑛 → (𝑁𝑘𝑁𝑛))
21elrab 2844 . . . . . . 7 (𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘} ↔ (𝑛 ∈ ℤ ∧ 𝑁𝑛))
32anbi2i 453 . . . . . 6 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)))
4 zcn 9083 . . . . . . . . 9 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
54ad2antrl 482 . . . . . . . 8 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → 𝑛 ∈ ℂ)
6 zcn 9083 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 1cnd 7806 . . . . . . . . 9 (𝑁 ∈ ℤ → 1 ∈ ℂ)
86, 7subcld 8097 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ)
9 npcan 7995 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ (𝑁 − 1) ∈ ℂ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) = 𝑛)
105, 8, 9syl2an 287 . . . . . . 7 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) = 𝑛)
11 ax-1cn 7737 . . . . . . . . . . 11 1 ∈ ℂ
12 subsub 8016 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
1311, 12mp3an3 1305 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
145, 6, 13syl2an 287 . . . . . . . . 9 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
15 znn0sub 9143 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁𝑛 ↔ (𝑛𝑁) ∈ ℕ0))
1615biimpa 294 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑁𝑛) → (𝑛𝑁) ∈ ℕ0)
1716anasss 397 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → (𝑛𝑁) ∈ ℕ0)
1817ancoms 266 . . . . . . . . . . 11 (((𝑛 ∈ ℤ ∧ 𝑁𝑛) ∧ 𝑁 ∈ ℤ) → (𝑛𝑁) ∈ ℕ0)
1918adantll 468 . . . . . . . . . 10 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛𝑁) ∈ ℕ0)
20 nn0p1nn 9040 . . . . . . . . . 10 ((𝑛𝑁) ∈ ℕ0 → ((𝑛𝑁) + 1) ∈ ℕ)
2119, 20syl 14 . . . . . . . . 9 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛𝑁) + 1) ∈ ℕ)
2214, 21eqeltrd 2217 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛 − (𝑁 − 1)) ∈ ℕ)
23 simpr 109 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
24 simpll 519 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴))
25 oveq1 5789 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 + (𝑁 − 1)) = (1 + (𝑁 − 1)))
2625eleq1d 2209 . . . . . . . . . . 11 (𝑘 = 1 → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ (1 + (𝑁 − 1)) ∈ 𝐴))
2726imbi2d 229 . . . . . . . . . 10 (𝑘 = 1 → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴)))
2827imbi2d 229 . . . . . . . . 9 (𝑘 = 1 → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴))))
29 oveq1 5789 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑘 + (𝑁 − 1)) = (𝑛 + (𝑁 − 1)))
3029eleq1d 2209 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ (𝑛 + (𝑁 − 1)) ∈ 𝐴))
3130imbi2d 229 . . . . . . . . . 10 (𝑘 = 𝑛 → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴)))
3231imbi2d 229 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴))))
33 oveq1 5789 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝑘 + (𝑁 − 1)) = ((𝑛 + 1) + (𝑁 − 1)))
3433eleq1d 2209 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
3534imbi2d 229 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
3635imbi2d 229 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
37 oveq1 5789 . . . . . . . . . . . 12 (𝑘 = (𝑛 − (𝑁 − 1)) → (𝑘 + (𝑁 − 1)) = ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)))
3837eleq1d 2209 . . . . . . . . . . 11 (𝑘 = (𝑛 − (𝑁 − 1)) → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴))
3938imbi2d 229 . . . . . . . . . 10 (𝑘 = (𝑛 − (𝑁 − 1)) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)))
4039imbi2d 229 . . . . . . . . 9 (𝑘 = (𝑛 − (𝑁 − 1)) → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴))))
41 1cnd 7806 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 1 ∈ ℂ)
426adantr 274 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑁 ∈ ℂ)
4341, 42pncan3d 8100 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (1 + (𝑁 − 1)) = 𝑁)
44 simprl 521 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑁𝐴)
4543, 44eqeltrd 2217 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (1 + (𝑁 − 1)) ∈ 𝐴)
4645ex 114 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴))
47 oveq1 5789 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑛 + (𝑁 − 1)) → (𝑥 + 1) = ((𝑛 + (𝑁 − 1)) + 1))
4847eleq1d 2209 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑛 + (𝑁 − 1)) → ((𝑥 + 1) ∈ 𝐴 ↔ ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
4948rspccv 2790 . . . . . . . . . . . . . . 15 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
5049ad2antll 483 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
51 simpll 519 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑛 ∈ ℕ)
5251nncnd 8758 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑛 ∈ ℂ)
538ad2antlr 481 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (𝑁 − 1) ∈ ℂ)
54 1cnd 7806 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 1 ∈ ℂ)
5552, 53, 54add32d 7954 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) + 1) = ((𝑛 + 1) + (𝑁 − 1)))
5655eleq1d 2209 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴 ↔ ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
5750, 56sylibd 148 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
5857ex 114 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
5958a2d 26 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
6059ex 114 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑁 ∈ ℤ → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
6160a2d 26 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴)) → (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
6228, 32, 36, 40, 46, 61nnind 8760 . . . . . . . 8 ((𝑛 − (𝑁 − 1)) ∈ ℕ → (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)))
6322, 23, 24, 62syl3c 63 . . . . . . 7 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)
6410, 63eqeltrrd 2218 . . . . . 6 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → 𝑛𝐴)
653, 64sylanb 282 . . . . 5 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) ∧ 𝑁 ∈ ℤ) → 𝑛𝐴)
6665expcom 115 . . . 4 (𝑁 ∈ ℤ → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) → 𝑛𝐴))
6766expdimp 257 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘} → 𝑛𝐴))
6867ssrdv 3108 . 2 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴)
6968ex 114 1 (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  wral 2417  {crab 2421  wss 3076   class class class wbr 3937  (class class class)co 5782  cc 7642  1c1 7645   + caddc 7647  cle 7825  cmin 7957  cn 8744  0cn0 9001  cz 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079
This theorem is referenced by:  peano5uzi  9184  uzind  9186
  Copyright terms: Public domain W3C validator