ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5uzti GIF version

Theorem peano5uzti 8953
Description: Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
Assertion
Ref Expression
peano5uzti (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝑁,𝑥

Proof of Theorem peano5uzti
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 breq2 3871 . . . . . . . 8 (𝑘 = 𝑛 → (𝑁𝑘𝑁𝑛))
21elrab 2785 . . . . . . 7 (𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘} ↔ (𝑛 ∈ ℤ ∧ 𝑁𝑛))
32anbi2i 446 . . . . . 6 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)))
4 zcn 8853 . . . . . . . . 9 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
54ad2antrl 475 . . . . . . . 8 (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → 𝑛 ∈ ℂ)
6 zcn 8853 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 1cnd 7601 . . . . . . . . 9 (𝑁 ∈ ℤ → 1 ∈ ℂ)
86, 7subcld 7890 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ)
9 npcan 7788 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ (𝑁 − 1) ∈ ℂ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) = 𝑛)
105, 8, 9syl2an 284 . . . . . . 7 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) = 𝑛)
11 ax-1cn 7535 . . . . . . . . . . 11 1 ∈ ℂ
12 subsub 7809 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
1311, 12mp3an3 1269 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
145, 6, 13syl2an 284 . . . . . . . . 9 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛 − (𝑁 − 1)) = ((𝑛𝑁) + 1))
15 znn0sub 8913 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁𝑛 ↔ (𝑛𝑁) ∈ ℕ0))
1615biimpa 291 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑁𝑛) → (𝑛𝑁) ∈ ℕ0)
1716anasss 392 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) → (𝑛𝑁) ∈ ℕ0)
1817ancoms 265 . . . . . . . . . . 11 (((𝑛 ∈ ℤ ∧ 𝑁𝑛) ∧ 𝑁 ∈ ℤ) → (𝑛𝑁) ∈ ℕ0)
1918adantll 461 . . . . . . . . . 10 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛𝑁) ∈ ℕ0)
20 nn0p1nn 8810 . . . . . . . . . 10 ((𝑛𝑁) ∈ ℕ0 → ((𝑛𝑁) + 1) ∈ ℕ)
2119, 20syl 14 . . . . . . . . 9 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛𝑁) + 1) ∈ ℕ)
2214, 21eqeltrd 2171 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑛 − (𝑁 − 1)) ∈ ℕ)
23 simpr 109 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
24 simpll 497 . . . . . . . 8 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴))
25 oveq1 5697 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 + (𝑁 − 1)) = (1 + (𝑁 − 1)))
2625eleq1d 2163 . . . . . . . . . . 11 (𝑘 = 1 → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ (1 + (𝑁 − 1)) ∈ 𝐴))
2726imbi2d 229 . . . . . . . . . 10 (𝑘 = 1 → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴)))
2827imbi2d 229 . . . . . . . . 9 (𝑘 = 1 → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴))))
29 oveq1 5697 . . . . . . . . . . . 12 (𝑘 = 𝑛 → (𝑘 + (𝑁 − 1)) = (𝑛 + (𝑁 − 1)))
3029eleq1d 2163 . . . . . . . . . . 11 (𝑘 = 𝑛 → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ (𝑛 + (𝑁 − 1)) ∈ 𝐴))
3130imbi2d 229 . . . . . . . . . 10 (𝑘 = 𝑛 → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴)))
3231imbi2d 229 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴))))
33 oveq1 5697 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝑘 + (𝑁 − 1)) = ((𝑛 + 1) + (𝑁 − 1)))
3433eleq1d 2163 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
3534imbi2d 229 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
3635imbi2d 229 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
37 oveq1 5697 . . . . . . . . . . . 12 (𝑘 = (𝑛 − (𝑁 − 1)) → (𝑘 + (𝑁 − 1)) = ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)))
3837eleq1d 2163 . . . . . . . . . . 11 (𝑘 = (𝑛 − (𝑁 − 1)) → ((𝑘 + (𝑁 − 1)) ∈ 𝐴 ↔ ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴))
3938imbi2d 229 . . . . . . . . . 10 (𝑘 = (𝑛 − (𝑁 − 1)) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴) ↔ ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)))
4039imbi2d 229 . . . . . . . . 9 (𝑘 = (𝑛 − (𝑁 − 1)) → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑘 + (𝑁 − 1)) ∈ 𝐴)) ↔ (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴))))
41 1cnd 7601 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 1 ∈ ℂ)
426adantr 271 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑁 ∈ ℂ)
4341, 42pncan3d 7893 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (1 + (𝑁 − 1)) = 𝑁)
44 simprl 499 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑁𝐴)
4543, 44eqeltrd 2171 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (1 + (𝑁 − 1)) ∈ 𝐴)
4645ex 114 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (1 + (𝑁 − 1)) ∈ 𝐴))
47 oveq1 5697 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑛 + (𝑁 − 1)) → (𝑥 + 1) = ((𝑛 + (𝑁 − 1)) + 1))
4847eleq1d 2163 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑛 + (𝑁 − 1)) → ((𝑥 + 1) ∈ 𝐴 ↔ ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
4948rspccv 2733 . . . . . . . . . . . . . . 15 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
5049ad2antll 476 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴))
51 simpll 497 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑛 ∈ ℕ)
5251nncnd 8534 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 𝑛 ∈ ℂ)
538ad2antlr 474 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (𝑁 − 1) ∈ ℂ)
54 1cnd 7601 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → 1 ∈ ℂ)
5552, 53, 54add32d 7747 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) + 1) = ((𝑛 + 1) + (𝑁 − 1)))
5655eleq1d 2163 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (((𝑛 + (𝑁 − 1)) + 1) ∈ 𝐴 ↔ ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
5750, 56sylibd 148 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))
5857ex 114 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + (𝑁 − 1)) ∈ 𝐴 → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
5958a2d 26 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴)))
6059ex 114 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑁 ∈ ℤ → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴) → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
6160a2d 26 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑛 + (𝑁 − 1)) ∈ 𝐴)) → (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 + 1) + (𝑁 − 1)) ∈ 𝐴))))
6228, 32, 36, 40, 46, 61nnind 8536 . . . . . . . 8 ((𝑛 − (𝑁 − 1)) ∈ ℕ → (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)))
6322, 23, 24, 62syl3c 63 . . . . . . 7 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → ((𝑛 − (𝑁 − 1)) + (𝑁 − 1)) ∈ 𝐴)
6410, 63eqeltrrd 2172 . . . . . 6 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ (𝑛 ∈ ℤ ∧ 𝑁𝑛)) ∧ 𝑁 ∈ ℤ) → 𝑛𝐴)
653, 64sylanb 279 . . . . 5 ((((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) ∧ 𝑁 ∈ ℤ) → 𝑛𝐴)
6665expcom 115 . . . 4 (𝑁 ∈ ℤ → (((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘}) → 𝑛𝐴))
6766expdimp 256 . . 3 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → (𝑛 ∈ {𝑘 ∈ ℤ ∣ 𝑁𝑘} → 𝑛𝐴))
6867ssrdv 3045 . 2 ((𝑁 ∈ ℤ ∧ (𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴)) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴)
6968ex 114 1 (𝑁 ∈ ℤ → ((𝑁𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁𝑘} ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1296  wcel 1445  wral 2370  {crab 2374  wss 3013   class class class wbr 3867  (class class class)co 5690  cc 7445  1c1 7448   + caddc 7450  cle 7620  cmin 7750  cn 8520  0cn0 8771  cz 8848
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849
This theorem is referenced by:  peano5uzi  8954  uzind  8956
  Copyright terms: Public domain W3C validator