ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmconst GIF version

Theorem lmconst 14452
Description: A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypothesis
Ref Expression
lmconst.2 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
lmconst ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡𝐽)𝑃)

Proof of Theorem lmconst
Dummy variables 𝑗 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1000 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝑃𝑋)
2 simp3 1001 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 uzid 9615 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
42, 3syl 14 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝑀 ∈ (ℤ𝑀))
5 lmconst.2 . . . . 5 𝑍 = (ℤ𝑀)
64, 5eleqtrrdi 2290 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝑀𝑍)
7 idd 21 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑃𝑢𝑃𝑢))
87ralrimdva 2577 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑃𝑢 → ∀𝑘 ∈ (ℤ𝑀)𝑃𝑢))
9 fveq2 5558 . . . . . 6 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
109raleqdv 2699 . . . . 5 (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ𝑗)𝑃𝑢 ↔ ∀𝑘 ∈ (ℤ𝑀)𝑃𝑢))
1110rspcev 2868 . . . 4 ((𝑀𝑍 ∧ ∀𝑘 ∈ (ℤ𝑀)𝑃𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑃𝑢)
126, 8, 11syl6an 1445 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑃𝑢))
1312ralrimivw 2571 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑃𝑢))
14 simp1 999 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → 𝐽 ∈ (TopOn‘𝑋))
15 fconst6g 5456 . . . 4 (𝑃𝑋 → (𝑍 × {𝑃}):𝑍𝑋)
161, 15syl 14 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑍 × {𝑃}):𝑍𝑋)
17 fvconst2g 5776 . . . 4 ((𝑃𝑋𝑘𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃)
181, 17sylan 283 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) ∧ 𝑘𝑍) → ((𝑍 × {𝑃})‘𝑘) = 𝑃)
1914, 5, 2, 16, 18lmbrf 14451 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → ((𝑍 × {𝑃})(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑃𝑢))))
201, 13, 19mpbir2and 946 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃𝑋𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡𝐽)𝑃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {csn 3622   class class class wbr 4033   × cxp 4661  wf 5254  cfv 5258  cz 9326  cuz 9601  TopOnctopon 14246  𝑡clm 14423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pm 6710  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-top 14234  df-topon 14247  df-lm 14426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator