Step | Hyp | Ref
| Expression |
1 | | simp2 998 |
. 2
β’ ((π½ β (TopOnβπ) β§ π β π β§ π β β€) β π β π) |
2 | | simp3 999 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ π β π β§ π β β€) β π β β€) |
3 | | uzid 9542 |
. . . . . 6
β’ (π β β€ β π β
(β€β₯βπ)) |
4 | 2, 3 | syl 14 |
. . . . 5
β’ ((π½ β (TopOnβπ) β§ π β π β§ π β β€) β π β (β€β₯βπ)) |
5 | | lmconst.2 |
. . . . 5
β’ π =
(β€β₯βπ) |
6 | 4, 5 | eleqtrrdi 2271 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ π β π β§ π β β€) β π β π) |
7 | | idd 21 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ π β π β§ π β β€) β§ π β (β€β₯βπ)) β (π β π’ β π β π’)) |
8 | 7 | ralrimdva 2557 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ π β π β§ π β β€) β (π β π’ β βπ β (β€β₯βπ)π β π’)) |
9 | | fveq2 5516 |
. . . . . 6
β’ (π = π β (β€β₯βπ) =
(β€β₯βπ)) |
10 | 9 | raleqdv 2679 |
. . . . 5
β’ (π = π β (βπ β (β€β₯βπ)π β π’ β βπ β (β€β₯βπ)π β π’)) |
11 | 10 | rspcev 2842 |
. . . 4
β’ ((π β π β§ βπ β (β€β₯βπ)π β π’) β βπ β π βπ β (β€β₯βπ)π β π’) |
12 | 6, 8, 11 | syl6an 1434 |
. . 3
β’ ((π½ β (TopOnβπ) β§ π β π β§ π β β€) β (π β π’ β βπ β π βπ β (β€β₯βπ)π β π’)) |
13 | 12 | ralrimivw 2551 |
. 2
β’ ((π½ β (TopOnβπ) β§ π β π β§ π β β€) β βπ’ β π½ (π β π’ β βπ β π βπ β (β€β₯βπ)π β π’)) |
14 | | simp1 997 |
. . 3
β’ ((π½ β (TopOnβπ) β§ π β π β§ π β β€) β π½ β (TopOnβπ)) |
15 | | fconst6g 5415 |
. . . 4
β’ (π β π β (π Γ {π}):πβΆπ) |
16 | 1, 15 | syl 14 |
. . 3
β’ ((π½ β (TopOnβπ) β§ π β π β§ π β β€) β (π Γ {π}):πβΆπ) |
17 | | fvconst2g 5731 |
. . . 4
β’ ((π β π β§ π β π) β ((π Γ {π})βπ) = π) |
18 | 1, 17 | sylan 283 |
. . 3
β’ (((π½ β (TopOnβπ) β§ π β π β§ π β β€) β§ π β π) β ((π Γ {π})βπ) = π) |
19 | 14, 5, 2, 16, 18 | lmbrf 13718 |
. 2
β’ ((π½ β (TopOnβπ) β§ π β π β§ π β β€) β ((π Γ {π})(βπ‘βπ½)π β (π β π β§ βπ’ β π½ (π β π’ β βπ β π βπ β (β€β₯βπ)π β π’)))) |
20 | 1, 13, 19 | mpbir2and 944 |
1
β’ ((π½ β (TopOnβπ) β§ π β π β§ π β β€) β (π Γ {π})(βπ‘βπ½)π) |