ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexico GIF version

Theorem rexico 10961
Description: Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
Assertion
Ref Expression
rexico ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘   𝜑,𝑗
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem rexico
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
2 pnfxr 7786 . . . 4 +∞ ∈ ℝ*
3 icossre 9705 . . . 4 ((𝐵 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵[,)+∞) ⊆ ℝ)
41, 2, 3sylancl 409 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵[,)+∞) ⊆ ℝ)
5 ssrexv 3132 . . 3 ((𝐵[,)+∞) ⊆ ℝ → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
64, 5syl 14 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
7 maxcl 10950 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ) → sup({𝐵, 𝑗}, ℝ, < ) ∈ ℝ)
87adantll 467 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → sup({𝐵, 𝑗}, ℝ, < ) ∈ ℝ)
9 maxle1 10951 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ sup({𝐵, 𝑗}, ℝ, < ))
109adantll 467 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐵 ≤ sup({𝐵, 𝑗}, ℝ, < ))
11 elicopnf 9720 . . . . . . 7 (𝐵 ∈ ℝ → (sup({𝐵, 𝑗}, ℝ, < ) ∈ (𝐵[,)+∞) ↔ (sup({𝐵, 𝑗}, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup({𝐵, 𝑗}, ℝ, < ))))
1211ad2antlr 480 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (sup({𝐵, 𝑗}, ℝ, < ) ∈ (𝐵[,)+∞) ↔ (sup({𝐵, 𝑗}, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup({𝐵, 𝑗}, ℝ, < ))))
138, 10, 12mpbir2and 913 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → sup({𝐵, 𝑗}, ℝ, < ) ∈ (𝐵[,)+∞))
14 simpllr 508 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℝ)
15 simplr 504 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝑗 ∈ ℝ)
16 simpll 503 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → 𝐴 ⊆ ℝ)
1716sselda 3067 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝑘 ∈ ℝ)
18 maxleastb 10954 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘 ↔ (𝐵𝑘𝑗𝑘)))
1914, 15, 17, 18syl3anc 1201 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘 ↔ (𝐵𝑘𝑗𝑘)))
20 simpr 109 . . . . . . . 8 ((𝐵𝑘𝑗𝑘) → 𝑗𝑘)
2119, 20syl6bi 162 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘𝑗𝑘))
2221imim1d 75 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘𝜑) → (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘𝜑)))
2322ralimdva 2476 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (∀𝑘𝐴 (𝑗𝑘𝜑) → ∀𝑘𝐴 (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘𝜑)))
24 breq1 3902 . . . . . . . 8 (𝑛 = sup({𝐵, 𝑗}, ℝ, < ) → (𝑛𝑘 ↔ sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘))
2524imbi1d 230 . . . . . . 7 (𝑛 = sup({𝐵, 𝑗}, ℝ, < ) → ((𝑛𝑘𝜑) ↔ (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘𝜑)))
2625ralbidv 2414 . . . . . 6 (𝑛 = sup({𝐵, 𝑗}, ℝ, < ) → (∀𝑘𝐴 (𝑛𝑘𝜑) ↔ ∀𝑘𝐴 (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘𝜑)))
2726rspcev 2763 . . . . 5 ((sup({𝐵, 𝑗}, ℝ, < ) ∈ (𝐵[,)+∞) ∧ ∀𝑘𝐴 (sup({𝐵, 𝑗}, ℝ, < ) ≤ 𝑘𝜑)) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑))
2813, 23, 27syl6an 1395 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑗 ∈ ℝ) → (∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑)))
2928rexlimdva 2526 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑)))
30 breq1 3902 . . . . . 6 (𝑛 = 𝑗 → (𝑛𝑘𝑗𝑘))
3130imbi1d 230 . . . . 5 (𝑛 = 𝑗 → ((𝑛𝑘𝜑) ↔ (𝑗𝑘𝜑)))
3231ralbidv 2414 . . . 4 (𝑛 = 𝑗 → (∀𝑘𝐴 (𝑛𝑘𝜑) ↔ ∀𝑘𝐴 (𝑗𝑘𝜑)))
3332cbvrexv 2632 . . 3 (∃𝑛 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑛𝑘𝜑) ↔ ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑))
3429, 33syl6ib 160 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) → ∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑)))
356, 34impbid 128 1 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  wral 2393  wrex 2394  wss 3041  {cpr 3498   class class class wbr 3899  (class class class)co 5742  supcsup 6837  cr 7587  +∞cpnf 7765  *cxr 7767   < clt 7768  cle 7769  [,)cico 9641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-sup 6839  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-rp 9410  df-ico 9645  df-seqfrec 10187  df-exp 10261  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator