Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds1lem GIF version

Theorem dvds1lem 11538
 Description: A lemma to assist theorems of ∥ with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds1lem.1 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ))
dvds1lem.2 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
dvds1lem.3 ((𝜑𝑥 ∈ ℤ) → 𝑍 ∈ ℤ)
dvds1lem.4 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁))
Assertion
Ref Expression
dvds1lem (𝜑 → (𝐽𝐾𝑀𝑁))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝑍(𝑥)

Proof of Theorem dvds1lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dvds1lem.3 . . . 4 ((𝜑𝑥 ∈ ℤ) → 𝑍 ∈ ℤ)
2 dvds1lem.4 . . . 4 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁))
3 oveq1 5788 . . . . . 6 (𝑧 = 𝑍 → (𝑧 · 𝑀) = (𝑍 · 𝑀))
43eqeq1d 2149 . . . . 5 (𝑧 = 𝑍 → ((𝑧 · 𝑀) = 𝑁 ↔ (𝑍 · 𝑀) = 𝑁))
54rspcev 2792 . . . 4 ((𝑍 ∈ ℤ ∧ (𝑍 · 𝑀) = 𝑁) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)
61, 2, 5syl6an 1411 . . 3 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
76rexlimdva 2552 . 2 (𝜑 → (∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
8 dvds1lem.1 . . 3 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ))
9 divides 11529 . . 3 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾))
108, 9syl 14 . 2 (𝜑 → (𝐽𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾))
11 dvds1lem.2 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
12 divides 11529 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
1311, 12syl 14 . 2 (𝜑 → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
147, 10, 133imtr4d 202 1 (𝜑 → (𝐽𝐾𝑀𝑁))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481  ∃wrex 2418   class class class wbr 3936  (class class class)co 5781   · cmul 7648  ℤcz 9077   ∥ cdvds 11527 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-iota 5095  df-fv 5138  df-ov 5784  df-dvds 11528 This theorem is referenced by:  negdvdsb  11543  dvdsnegb  11544  muldvds1  11552  muldvds2  11553  dvdscmul  11554  dvdsmulc  11555  dvdscmulr  11556  dvdsmulcr  11557
 Copyright terms: Public domain W3C validator