![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvds1lem | GIF version |
Description: A lemma to assist theorems of ∥ with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds1lem.1 | ⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
dvds1lem.2 | ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
dvds1lem.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑍 ∈ ℤ) |
dvds1lem.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁)) |
Ref | Expression |
---|---|
dvds1lem | ⊢ (𝜑 → (𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvds1lem.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑍 ∈ ℤ) | |
2 | dvds1lem.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁)) | |
3 | oveq1 5925 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑧 · 𝑀) = (𝑍 · 𝑀)) | |
4 | 3 | eqeq1d 2202 | . . . . 5 ⊢ (𝑧 = 𝑍 → ((𝑧 · 𝑀) = 𝑁 ↔ (𝑍 · 𝑀) = 𝑁)) |
5 | 4 | rspcev 2864 | . . . 4 ⊢ ((𝑍 ∈ ℤ ∧ (𝑍 · 𝑀) = 𝑁) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁) |
6 | 1, 2, 5 | syl6an 1445 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
7 | 6 | rexlimdva 2611 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
8 | dvds1lem.1 | . . 3 ⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) | |
9 | divides 11932 | . . 3 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾)) | |
10 | 8, 9 | syl 14 | . 2 ⊢ (𝜑 → (𝐽 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾)) |
11 | dvds1lem.2 | . . 3 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
12 | divides 11932 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) | |
13 | 11, 12 | syl 14 | . 2 ⊢ (𝜑 → (𝑀 ∥ 𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
14 | 7, 10, 13 | 3imtr4d 203 | 1 ⊢ (𝜑 → (𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 class class class wbr 4029 (class class class)co 5918 · cmul 7877 ℤcz 9317 ∥ cdvds 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-iota 5215 df-fv 5262 df-ov 5921 df-dvds 11931 |
This theorem is referenced by: negdvdsb 11950 dvdsnegb 11951 muldvds1 11959 muldvds2 11960 dvdscmul 11961 dvdsmulc 11962 dvdscmulr 11963 dvdsmulcr 11964 |
Copyright terms: Public domain | W3C validator |