Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvds1lem | GIF version |
Description: A lemma to assist theorems of ∥ with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds1lem.1 | ⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
dvds1lem.2 | ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
dvds1lem.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑍 ∈ ℤ) |
dvds1lem.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁)) |
Ref | Expression |
---|---|
dvds1lem | ⊢ (𝜑 → (𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvds1lem.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑍 ∈ ℤ) | |
2 | dvds1lem.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁)) | |
3 | oveq1 5849 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑧 · 𝑀) = (𝑍 · 𝑀)) | |
4 | 3 | eqeq1d 2174 | . . . . 5 ⊢ (𝑧 = 𝑍 → ((𝑧 · 𝑀) = 𝑁 ↔ (𝑍 · 𝑀) = 𝑁)) |
5 | 4 | rspcev 2830 | . . . 4 ⊢ ((𝑍 ∈ ℤ ∧ (𝑍 · 𝑀) = 𝑁) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁) |
6 | 1, 2, 5 | syl6an 1422 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
7 | 6 | rexlimdva 2583 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
8 | dvds1lem.1 | . . 3 ⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) | |
9 | divides 11729 | . . 3 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾)) | |
10 | 8, 9 | syl 14 | . 2 ⊢ (𝜑 → (𝐽 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾)) |
11 | dvds1lem.2 | . . 3 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
12 | divides 11729 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) | |
13 | 11, 12 | syl 14 | . 2 ⊢ (𝜑 → (𝑀 ∥ 𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
14 | 7, 10, 13 | 3imtr4d 202 | 1 ⊢ (𝜑 → (𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 class class class wbr 3982 (class class class)co 5842 · cmul 7758 ℤcz 9191 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-iota 5153 df-fv 5196 df-ov 5845 df-dvds 11728 |
This theorem is referenced by: negdvdsb 11747 dvdsnegb 11748 muldvds1 11756 muldvds2 11757 dvdscmul 11758 dvdsmulc 11759 dvdscmulr 11760 dvdsmulcr 11761 |
Copyright terms: Public domain | W3C validator |