ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds1lem GIF version

Theorem dvds1lem 12321
Description: A lemma to assist theorems of with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds1lem.1 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ))
dvds1lem.2 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
dvds1lem.3 ((𝜑𝑥 ∈ ℤ) → 𝑍 ∈ ℤ)
dvds1lem.4 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁))
Assertion
Ref Expression
dvds1lem (𝜑 → (𝐽𝐾𝑀𝑁))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝑍(𝑥)

Proof of Theorem dvds1lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dvds1lem.3 . . . 4 ((𝜑𝑥 ∈ ℤ) → 𝑍 ∈ ℤ)
2 dvds1lem.4 . . . 4 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁))
3 oveq1 6014 . . . . . 6 (𝑧 = 𝑍 → (𝑧 · 𝑀) = (𝑍 · 𝑀))
43eqeq1d 2238 . . . . 5 (𝑧 = 𝑍 → ((𝑧 · 𝑀) = 𝑁 ↔ (𝑍 · 𝑀) = 𝑁))
54rspcev 2907 . . . 4 ((𝑍 ∈ ℤ ∧ (𝑍 · 𝑀) = 𝑁) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)
61, 2, 5syl6an 1476 . . 3 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
76rexlimdva 2648 . 2 (𝜑 → (∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
8 dvds1lem.1 . . 3 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ))
9 divides 12308 . . 3 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾))
108, 9syl 14 . 2 (𝜑 → (𝐽𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾))
11 dvds1lem.2 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
12 divides 12308 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
1311, 12syl 14 . 2 (𝜑 → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
147, 10, 133imtr4d 203 1 (𝜑 → (𝐽𝐾𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4083  (class class class)co 6007   · cmul 8012  cz 9454  cdvds 12306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-iota 5278  df-fv 5326  df-ov 6010  df-dvds 12307
This theorem is referenced by:  negdvdsb  12326  dvdsnegb  12327  muldvds1  12335  muldvds2  12336  dvdscmul  12337  dvdsmulc  12338  dvdscmulr  12339  dvdsmulcr  12340
  Copyright terms: Public domain W3C validator