ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ublbneg GIF version

Theorem ublbneg 9627
Description: The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9609. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
ublbneg (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem ublbneg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4018 . . . . 5 (𝑏 = 𝑦 → (𝑏𝑎𝑦𝑎))
21cbvralv 2715 . . . 4 (∀𝑏𝐴 𝑏𝑎 ↔ ∀𝑦𝐴 𝑦𝑎)
32rexbii 2494 . . 3 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏𝑎 ↔ ∃𝑎 ∈ ℝ ∀𝑦𝐴 𝑦𝑎)
4 breq2 4019 . . . . 5 (𝑎 = 𝑥 → (𝑦𝑎𝑦𝑥))
54ralbidv 2487 . . . 4 (𝑎 = 𝑥 → (∀𝑦𝐴 𝑦𝑎 ↔ ∀𝑦𝐴 𝑦𝑥))
65cbvrexv 2716 . . 3 (∃𝑎 ∈ ℝ ∀𝑦𝐴 𝑦𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
73, 6bitri 184 . 2 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
8 renegcl 8232 . . . 4 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
9 elrabi 2902 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → 𝑦 ∈ ℝ)
10 negeq 8164 . . . . . . . . . . . 12 (𝑧 = 𝑦 → -𝑧 = -𝑦)
1110eleq1d 2256 . . . . . . . . . . 11 (𝑧 = 𝑦 → (-𝑧𝐴 ↔ -𝑦𝐴))
1211elrab3 2906 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ -𝑦𝐴))
1312biimpd 144 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → -𝑦𝐴))
149, 13mpcom 36 . . . . . . . 8 (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → -𝑦𝐴)
15 breq1 4018 . . . . . . . . 9 (𝑏 = -𝑦 → (𝑏𝑎 ↔ -𝑦𝑎))
1615rspcv 2849 . . . . . . . 8 (-𝑦𝐴 → (∀𝑏𝐴 𝑏𝑎 → -𝑦𝑎))
1714, 16syl 14 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → (∀𝑏𝐴 𝑏𝑎 → -𝑦𝑎))
1817adantl 277 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}) → (∀𝑏𝐴 𝑏𝑎 → -𝑦𝑎))
19 lenegcon1 8437 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑎𝑦 ↔ -𝑦𝑎))
209, 19sylan2 286 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}) → (-𝑎𝑦 ↔ -𝑦𝑎))
2118, 20sylibrd 169 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}) → (∀𝑏𝐴 𝑏𝑎 → -𝑎𝑦))
2221ralrimdva 2567 . . . 4 (𝑎 ∈ ℝ → (∀𝑏𝐴 𝑏𝑎 → ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}-𝑎𝑦))
23 breq1 4018 . . . . . 6 (𝑥 = -𝑎 → (𝑥𝑦 ↔ -𝑎𝑦))
2423ralbidv 2487 . . . . 5 (𝑥 = -𝑎 → (∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦 ↔ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}-𝑎𝑦))
2524rspcev 2853 . . . 4 ((-𝑎 ∈ ℝ ∧ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}-𝑎𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
268, 22, 25syl6an 1444 . . 3 (𝑎 ∈ ℝ → (∀𝑏𝐴 𝑏𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦))
2726rexlimiv 2598 . 2 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
287, 27sylbir 135 1 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1363  wcel 2158  wral 2465  wrex 2466  {crab 2469   class class class wbr 4015  cr 7824  cle 8007  -cneg 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator