| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ublbneg | GIF version | ||
| Description: The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9669. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| ublbneg | ⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4036 | . . . . 5 ⊢ (𝑏 = 𝑦 → (𝑏 ≤ 𝑎 ↔ 𝑦 ≤ 𝑎)) | |
| 2 | 1 | cbvralv 2729 | . . . 4 ⊢ (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎) |
| 3 | 2 | rexbii 2504 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∃𝑎 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎) |
| 4 | breq2 4037 | . . . . 5 ⊢ (𝑎 = 𝑥 → (𝑦 ≤ 𝑎 ↔ 𝑦 ≤ 𝑥)) | |
| 5 | 4 | ralbidv 2497 | . . . 4 ⊢ (𝑎 = 𝑥 → (∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ↔ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
| 6 | 5 | cbvrexv 2730 | . . 3 ⊢ (∃𝑎 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 7 | 3, 6 | bitri 184 | . 2 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 8 | renegcl 8287 | . . . 4 ⊢ (𝑎 ∈ ℝ → -𝑎 ∈ ℝ) | |
| 9 | elrabi 2917 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → 𝑦 ∈ ℝ) | |
| 10 | negeq 8219 | . . . . . . . . . . . 12 ⊢ (𝑧 = 𝑦 → -𝑧 = -𝑦) | |
| 11 | 10 | eleq1d 2265 | . . . . . . . . . . 11 ⊢ (𝑧 = 𝑦 → (-𝑧 ∈ 𝐴 ↔ -𝑦 ∈ 𝐴)) |
| 12 | 11 | elrab3 2921 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} ↔ -𝑦 ∈ 𝐴)) |
| 13 | 12 | biimpd 144 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → -𝑦 ∈ 𝐴)) |
| 14 | 9, 13 | mpcom 36 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → -𝑦 ∈ 𝐴) |
| 15 | breq1 4036 | . . . . . . . . 9 ⊢ (𝑏 = -𝑦 → (𝑏 ≤ 𝑎 ↔ -𝑦 ≤ 𝑎)) | |
| 16 | 15 | rspcv 2864 | . . . . . . . 8 ⊢ (-𝑦 ∈ 𝐴 → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
| 17 | 14, 16 | syl 14 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
| 18 | 17 | adantl 277 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑦 ≤ 𝑎)) |
| 19 | lenegcon1 8493 | . . . . . . 7 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑎 ≤ 𝑦 ↔ -𝑦 ≤ 𝑎)) | |
| 20 | 9, 19 | sylan2 286 | . . . . . 6 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (-𝑎 ≤ 𝑦 ↔ -𝑦 ≤ 𝑎)) |
| 21 | 18, 20 | sylibrd 169 | . . . . 5 ⊢ ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}) → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → -𝑎 ≤ 𝑦)) |
| 22 | 21 | ralrimdva 2577 | . . . 4 ⊢ (𝑎 ∈ ℝ → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦)) |
| 23 | breq1 4036 | . . . . . 6 ⊢ (𝑥 = -𝑎 → (𝑥 ≤ 𝑦 ↔ -𝑎 ≤ 𝑦)) | |
| 24 | 23 | ralbidv 2497 | . . . . 5 ⊢ (𝑥 = -𝑎 → (∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦)) |
| 25 | 24 | rspcev 2868 | . . . 4 ⊢ ((-𝑎 ∈ ℝ ∧ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}-𝑎 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
| 26 | 8, 22, 25 | syl6an 1445 | . . 3 ⊢ (𝑎 ∈ ℝ → (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦)) |
| 27 | 26 | rexlimiv 2608 | . 2 ⊢ (∃𝑎 ∈ ℝ ∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
| 28 | 7, 27 | sylbir 135 | 1 ⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 {crab 2479 class class class wbr 4033 ℝcr 7878 ≤ cle 8062 -cneg 8198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |