ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ublbneg GIF version

Theorem ublbneg 9432
Description: The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9417. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
ublbneg (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem ublbneg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3940 . . . . 5 (𝑏 = 𝑦 → (𝑏𝑎𝑦𝑎))
21cbvralv 2657 . . . 4 (∀𝑏𝐴 𝑏𝑎 ↔ ∀𝑦𝐴 𝑦𝑎)
32rexbii 2445 . . 3 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏𝑎 ↔ ∃𝑎 ∈ ℝ ∀𝑦𝐴 𝑦𝑎)
4 breq2 3941 . . . . 5 (𝑎 = 𝑥 → (𝑦𝑎𝑦𝑥))
54ralbidv 2438 . . . 4 (𝑎 = 𝑥 → (∀𝑦𝐴 𝑦𝑎 ↔ ∀𝑦𝐴 𝑦𝑥))
65cbvrexv 2658 . . 3 (∃𝑎 ∈ ℝ ∀𝑦𝐴 𝑦𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
73, 6bitri 183 . 2 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
8 renegcl 8047 . . . 4 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
9 elrabi 2841 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → 𝑦 ∈ ℝ)
10 negeq 7979 . . . . . . . . . . . 12 (𝑧 = 𝑦 → -𝑧 = -𝑦)
1110eleq1d 2209 . . . . . . . . . . 11 (𝑧 = 𝑦 → (-𝑧𝐴 ↔ -𝑦𝐴))
1211elrab3 2845 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ -𝑦𝐴))
1312biimpd 143 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → -𝑦𝐴))
149, 13mpcom 36 . . . . . . . 8 (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → -𝑦𝐴)
15 breq1 3940 . . . . . . . . 9 (𝑏 = -𝑦 → (𝑏𝑎 ↔ -𝑦𝑎))
1615rspcv 2789 . . . . . . . 8 (-𝑦𝐴 → (∀𝑏𝐴 𝑏𝑎 → -𝑦𝑎))
1714, 16syl 14 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → (∀𝑏𝐴 𝑏𝑎 → -𝑦𝑎))
1817adantl 275 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}) → (∀𝑏𝐴 𝑏𝑎 → -𝑦𝑎))
19 lenegcon1 8252 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑎𝑦 ↔ -𝑦𝑎))
209, 19sylan2 284 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}) → (-𝑎𝑦 ↔ -𝑦𝑎))
2118, 20sylibrd 168 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}) → (∀𝑏𝐴 𝑏𝑎 → -𝑎𝑦))
2221ralrimdva 2515 . . . 4 (𝑎 ∈ ℝ → (∀𝑏𝐴 𝑏𝑎 → ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}-𝑎𝑦))
23 breq1 3940 . . . . . 6 (𝑥 = -𝑎 → (𝑥𝑦 ↔ -𝑎𝑦))
2423ralbidv 2438 . . . . 5 (𝑥 = -𝑎 → (∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦 ↔ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}-𝑎𝑦))
2524rspcev 2793 . . . 4 ((-𝑎 ∈ ℝ ∧ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}-𝑎𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
268, 22, 25syl6an 1411 . . 3 (𝑎 ∈ ℝ → (∀𝑏𝐴 𝑏𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦))
2726rexlimiv 2546 . 2 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
287, 27sylbir 134 1 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wral 2417  wrex 2418  {crab 2421   class class class wbr 3937  cr 7643  cle 7825  -cneg 7958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator