ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ublbneg GIF version

Theorem ublbneg 9678
Description: The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9660. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
ublbneg (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem ublbneg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4032 . . . . 5 (𝑏 = 𝑦 → (𝑏𝑎𝑦𝑎))
21cbvralv 2726 . . . 4 (∀𝑏𝐴 𝑏𝑎 ↔ ∀𝑦𝐴 𝑦𝑎)
32rexbii 2501 . . 3 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏𝑎 ↔ ∃𝑎 ∈ ℝ ∀𝑦𝐴 𝑦𝑎)
4 breq2 4033 . . . . 5 (𝑎 = 𝑥 → (𝑦𝑎𝑦𝑥))
54ralbidv 2494 . . . 4 (𝑎 = 𝑥 → (∀𝑦𝐴 𝑦𝑎 ↔ ∀𝑦𝐴 𝑦𝑥))
65cbvrexv 2727 . . 3 (∃𝑎 ∈ ℝ ∀𝑦𝐴 𝑦𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
73, 6bitri 184 . 2 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
8 renegcl 8280 . . . 4 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
9 elrabi 2913 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → 𝑦 ∈ ℝ)
10 negeq 8212 . . . . . . . . . . . 12 (𝑧 = 𝑦 → -𝑧 = -𝑦)
1110eleq1d 2262 . . . . . . . . . . 11 (𝑧 = 𝑦 → (-𝑧𝐴 ↔ -𝑦𝐴))
1211elrab3 2917 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ -𝑦𝐴))
1312biimpd 144 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → -𝑦𝐴))
149, 13mpcom 36 . . . . . . . 8 (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → -𝑦𝐴)
15 breq1 4032 . . . . . . . . 9 (𝑏 = -𝑦 → (𝑏𝑎 ↔ -𝑦𝑎))
1615rspcv 2860 . . . . . . . 8 (-𝑦𝐴 → (∀𝑏𝐴 𝑏𝑎 → -𝑦𝑎))
1714, 16syl 14 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → (∀𝑏𝐴 𝑏𝑎 → -𝑦𝑎))
1817adantl 277 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}) → (∀𝑏𝐴 𝑏𝑎 → -𝑦𝑎))
19 lenegcon1 8485 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑎𝑦 ↔ -𝑦𝑎))
209, 19sylan2 286 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}) → (-𝑎𝑦 ↔ -𝑦𝑎))
2118, 20sylibrd 169 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}) → (∀𝑏𝐴 𝑏𝑎 → -𝑎𝑦))
2221ralrimdva 2574 . . . 4 (𝑎 ∈ ℝ → (∀𝑏𝐴 𝑏𝑎 → ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}-𝑎𝑦))
23 breq1 4032 . . . . . 6 (𝑥 = -𝑎 → (𝑥𝑦 ↔ -𝑎𝑦))
2423ralbidv 2494 . . . . 5 (𝑥 = -𝑎 → (∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦 ↔ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}-𝑎𝑦))
2524rspcev 2864 . . . 4 ((-𝑎 ∈ ℝ ∧ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}-𝑎𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
268, 22, 25syl6an 1445 . . 3 (𝑎 ∈ ℝ → (∀𝑏𝐴 𝑏𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦))
2726rexlimiv 2605 . 2 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
287, 27sylbir 135 1 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  {crab 2476   class class class wbr 4029  cr 7871  cle 8055  -cneg 8191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator