ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ublbneg GIF version

Theorem ublbneg 9734
Description: The image under negation of a bounded-above set of reals is bounded below. For a theorem which is similar but also adds that the bounds need to be the tightest possible, see supinfneg 9716. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
ublbneg (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem ublbneg
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4047 . . . . 5 (𝑏 = 𝑦 → (𝑏𝑎𝑦𝑎))
21cbvralv 2738 . . . 4 (∀𝑏𝐴 𝑏𝑎 ↔ ∀𝑦𝐴 𝑦𝑎)
32rexbii 2513 . . 3 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏𝑎 ↔ ∃𝑎 ∈ ℝ ∀𝑦𝐴 𝑦𝑎)
4 breq2 4048 . . . . 5 (𝑎 = 𝑥 → (𝑦𝑎𝑦𝑥))
54ralbidv 2506 . . . 4 (𝑎 = 𝑥 → (∀𝑦𝐴 𝑦𝑎 ↔ ∀𝑦𝐴 𝑦𝑥))
65cbvrexv 2739 . . 3 (∃𝑎 ∈ ℝ ∀𝑦𝐴 𝑦𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
73, 6bitri 184 . 2 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏𝑎 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
8 renegcl 8333 . . . 4 (𝑎 ∈ ℝ → -𝑎 ∈ ℝ)
9 elrabi 2926 . . . . . . . . 9 (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → 𝑦 ∈ ℝ)
10 negeq 8265 . . . . . . . . . . . 12 (𝑧 = 𝑦 → -𝑧 = -𝑦)
1110eleq1d 2274 . . . . . . . . . . 11 (𝑧 = 𝑦 → (-𝑧𝐴 ↔ -𝑦𝐴))
1211elrab3 2930 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ -𝑦𝐴))
1312biimpd 144 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → -𝑦𝐴))
149, 13mpcom 36 . . . . . . . 8 (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → -𝑦𝐴)
15 breq1 4047 . . . . . . . . 9 (𝑏 = -𝑦 → (𝑏𝑎 ↔ -𝑦𝑎))
1615rspcv 2873 . . . . . . . 8 (-𝑦𝐴 → (∀𝑏𝐴 𝑏𝑎 → -𝑦𝑎))
1714, 16syl 14 . . . . . . 7 (𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → (∀𝑏𝐴 𝑏𝑎 → -𝑦𝑎))
1817adantl 277 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}) → (∀𝑏𝐴 𝑏𝑎 → -𝑦𝑎))
19 lenegcon1 8539 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-𝑎𝑦 ↔ -𝑦𝑎))
209, 19sylan2 286 . . . . . 6 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}) → (-𝑎𝑦 ↔ -𝑦𝑎))
2118, 20sylibrd 169 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}) → (∀𝑏𝐴 𝑏𝑎 → -𝑎𝑦))
2221ralrimdva 2586 . . . 4 (𝑎 ∈ ℝ → (∀𝑏𝐴 𝑏𝑎 → ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}-𝑎𝑦))
23 breq1 4047 . . . . . 6 (𝑥 = -𝑎 → (𝑥𝑦 ↔ -𝑎𝑦))
2423ralbidv 2506 . . . . 5 (𝑥 = -𝑎 → (∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦 ↔ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}-𝑎𝑦))
2524rspcev 2877 . . . 4 ((-𝑎 ∈ ℝ ∧ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}-𝑎𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
268, 22, 25syl6an 1454 . . 3 (𝑎 ∈ ℝ → (∀𝑏𝐴 𝑏𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦))
2726rexlimiv 2617 . 2 (∃𝑎 ∈ ℝ ∀𝑏𝐴 𝑏𝑎 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
287, 27sylbir 135 1 (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}𝑥𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wral 2484  wrex 2485  {crab 2488   class class class wbr 4044  cr 7924  cle 8108  -cneg 8244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator