ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2lem GIF version

Theorem dvds2lem 11743
Description: A lemma to assist theorems of with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds2lem.1 (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ))
dvds2lem.2 (𝜑 → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ))
dvds2lem.3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
dvds2lem.4 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑍 ∈ ℤ)
dvds2lem.5 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → (𝑍 · 𝑀) = 𝑁))
Assertion
Ref Expression
dvds2lem (𝜑 → ((𝐼𝐽𝐾𝐿) → 𝑀𝑁))
Distinct variable groups:   𝑥,𝐼,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem dvds2lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dvds2lem.1 . . . . . 6 (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ))
2 dvds2lem.2 . . . . . 6 (𝜑 → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ))
3 divides 11729 . . . . . . 7 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼𝐽 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽))
4 divides 11729 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾𝐿 ↔ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿))
53, 4bi2anan9 596 . . . . . 6 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐼𝐽𝐾𝐿) ↔ (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿)))
61, 2, 5syl2anc 409 . . . . 5 (𝜑 → ((𝐼𝐽𝐾𝐿) ↔ (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿)))
76biimpd 143 . . . 4 (𝜑 → ((𝐼𝐽𝐾𝐿) → (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿)))
8 reeanv 2635 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) ↔ (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿))
97, 8syl6ibr 161 . . 3 (𝜑 → ((𝐼𝐽𝐾𝐿) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿)))
10 dvds2lem.4 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑍 ∈ ℤ)
11 dvds2lem.5 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → (𝑍 · 𝑀) = 𝑁))
12 oveq1 5849 . . . . . . 7 (𝑧 = 𝑍 → (𝑧 · 𝑀) = (𝑍 · 𝑀))
1312eqeq1d 2174 . . . . . 6 (𝑧 = 𝑍 → ((𝑧 · 𝑀) = 𝑁 ↔ (𝑍 · 𝑀) = 𝑁))
1413rspcev 2830 . . . . 5 ((𝑍 ∈ ℤ ∧ (𝑍 · 𝑀) = 𝑁) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)
1510, 11, 14syl6an 1422 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
1615rexlimdvva 2591 . . 3 (𝜑 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
179, 16syld 45 . 2 (𝜑 → ((𝐼𝐽𝐾𝐿) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
18 dvds2lem.3 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
19 divides 11729 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
2018, 19syl 14 . 2 (𝜑 → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
2117, 20sylibrd 168 1 (𝜑 → ((𝐼𝐽𝐾𝐿) → 𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  (class class class)co 5842   · cmul 7758  cz 9191  cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-iota 5153  df-fv 5196  df-ov 5845  df-dvds 11728
This theorem is referenced by:  dvds2ln  11764  dvds2add  11765  dvds2sub  11766  dvdstr  11768
  Copyright terms: Public domain W3C validator