ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2lem GIF version

Theorem dvds2lem 11729
Description: A lemma to assist theorems of with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds2lem.1 (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ))
dvds2lem.2 (𝜑 → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ))
dvds2lem.3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
dvds2lem.4 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑍 ∈ ℤ)
dvds2lem.5 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → (𝑍 · 𝑀) = 𝑁))
Assertion
Ref Expression
dvds2lem (𝜑 → ((𝐼𝐽𝐾𝐿) → 𝑀𝑁))
Distinct variable groups:   𝑥,𝐼,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem dvds2lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dvds2lem.1 . . . . . 6 (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ))
2 dvds2lem.2 . . . . . 6 (𝜑 → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ))
3 divides 11715 . . . . . . 7 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼𝐽 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽))
4 divides 11715 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾𝐿 ↔ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿))
53, 4bi2anan9 596 . . . . . 6 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐼𝐽𝐾𝐿) ↔ (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿)))
61, 2, 5syl2anc 409 . . . . 5 (𝜑 → ((𝐼𝐽𝐾𝐿) ↔ (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿)))
76biimpd 143 . . . 4 (𝜑 → ((𝐼𝐽𝐾𝐿) → (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿)))
8 reeanv 2633 . . . 4 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) ↔ (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿))
97, 8syl6ibr 161 . . 3 (𝜑 → ((𝐼𝐽𝐾𝐿) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿)))
10 dvds2lem.4 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑍 ∈ ℤ)
11 dvds2lem.5 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → (𝑍 · 𝑀) = 𝑁))
12 oveq1 5843 . . . . . . 7 (𝑧 = 𝑍 → (𝑧 · 𝑀) = (𝑍 · 𝑀))
1312eqeq1d 2173 . . . . . 6 (𝑧 = 𝑍 → ((𝑧 · 𝑀) = 𝑁 ↔ (𝑍 · 𝑀) = 𝑁))
1413rspcev 2825 . . . . 5 ((𝑍 ∈ ℤ ∧ (𝑍 · 𝑀) = 𝑁) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)
1510, 11, 14syl6an 1421 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
1615rexlimdvva 2589 . . 3 (𝜑 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
179, 16syld 45 . 2 (𝜑 → ((𝐼𝐽𝐾𝐿) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
18 dvds2lem.3 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
19 divides 11715 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
2018, 19syl 14 . 2 (𝜑 → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
2117, 20sylibrd 168 1 (𝜑 → ((𝐼𝐽𝐾𝐿) → 𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135  wrex 2443   class class class wbr 3976  (class class class)co 5836   · cmul 7749  cz 9182  cdvds 11713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-iota 5147  df-fv 5190  df-ov 5839  df-dvds 11714
This theorem is referenced by:  dvds2ln  11750  dvds2add  11751  dvds2sub  11752  dvdstr  11754
  Copyright terms: Public domain W3C validator