ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffnfv GIF version

Theorem ffnfv 5652
Description: A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
ffnfv (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem ffnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffn 5345 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 ffvelrn 5627 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
32ralrimiva 2543 . . 3 (𝐹:𝐴𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
41, 3jca 304 . 2 (𝐹:𝐴𝐵 → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
5 simpl 108 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → 𝐹 Fn 𝐴)
6 fvelrnb 5542 . . . . . 6 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
76biimpd 143 . . . . 5 (𝐹 Fn 𝐴 → (𝑦 ∈ ran 𝐹 → ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
8 nfra1 2501 . . . . . 6 𝑥𝑥𝐴 (𝐹𝑥) ∈ 𝐵
9 nfv 1521 . . . . . 6 𝑥 𝑦𝐵
10 rsp 2517 . . . . . . 7 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 → (𝑥𝐴 → (𝐹𝑥) ∈ 𝐵))
11 eleq1 2233 . . . . . . . 8 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝐵𝑦𝐵))
1211biimpcd 158 . . . . . . 7 ((𝐹𝑥) ∈ 𝐵 → ((𝐹𝑥) = 𝑦𝑦𝐵))
1310, 12syl6 33 . . . . . 6 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑦𝐵)))
148, 9, 13rexlimd 2584 . . . . 5 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 → (∃𝑥𝐴 (𝐹𝑥) = 𝑦𝑦𝐵))
157, 14sylan9 407 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → (𝑦 ∈ ran 𝐹𝑦𝐵))
1615ssrdv 3153 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → ran 𝐹𝐵)
17 df-f 5200 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
185, 16, 17sylanbrc 415 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → 𝐹:𝐴𝐵)
194, 18impbii 125 1 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449  wss 3121  ran crn 4610   Fn wfn 5191  wf 5192  cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204
This theorem is referenced by:  ffnfvf  5653  fnfvrnss  5654  fmpt2d  5656  ffnov  5955  elixpconst  6682  elixpsn  6711  ctssdccl  7086  cnref1o  9602  shftf  10787  eff2  11636  reeff1  11656  1arith  12312  dvfre  13433  ioocosf1o  13534  012of  13993  2o01f  13994
  Copyright terms: Public domain W3C validator