ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rescncf GIF version

Theorem rescncf 14364
Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
rescncf (𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))

Proof of Theorem rescncf
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐹 ∈ (𝐴cn𝐵))
2 cncfrss 14358 . . . . . . . 8 (𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
32adantl 277 . . . . . . 7 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐴 ⊆ ℂ)
4 cncfrss2 14359 . . . . . . . 8 (𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
54adantl 277 . . . . . . 7 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐵 ⊆ ℂ)
6 elcncf 14356 . . . . . . 7 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
73, 5, 6syl2anc 411 . . . . . 6 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
81, 7mpbid 147 . . . . 5 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
98simpld 112 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐹:𝐴𝐵)
10 simpl 109 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐶𝐴)
119, 10fssresd 5404 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹𝐶):𝐶𝐵)
128simprd 114 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
13 ssralv 3231 . . . . 5 (𝐶𝐴 → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
14 ssralv 3231 . . . . . . . . 9 (𝐶𝐴 → (∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
15 fvres 5551 . . . . . . . . . . . . . . 15 (𝑥𝐶 → ((𝐹𝐶)‘𝑥) = (𝐹𝑥))
16 fvres 5551 . . . . . . . . . . . . . . 15 (𝑤𝐶 → ((𝐹𝐶)‘𝑤) = (𝐹𝑤))
1715, 16oveqan12d 5907 . . . . . . . . . . . . . 14 ((𝑥𝐶𝑤𝐶) → (((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤)) = ((𝐹𝑥) − (𝐹𝑤)))
1817fveq2d 5531 . . . . . . . . . . . . 13 ((𝑥𝐶𝑤𝐶) → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) = (abs‘((𝐹𝑥) − (𝐹𝑤))))
1918breq1d 4025 . . . . . . . . . . . 12 ((𝑥𝐶𝑤𝐶) → ((abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦 ↔ (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))
2019imbi2d 230 . . . . . . . . . . 11 ((𝑥𝐶𝑤𝐶) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))
2120biimprd 158 . . . . . . . . . 10 ((𝑥𝐶𝑤𝐶) → (((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2221ralimdva 2554 . . . . . . . . 9 (𝑥𝐶 → (∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2314, 22sylan9 409 . . . . . . . 8 ((𝐶𝐴𝑥𝐶) → (∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2423reximdv 2588 . . . . . . 7 ((𝐶𝐴𝑥𝐶) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∃𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2524ralimdv 2555 . . . . . 6 ((𝐶𝐴𝑥𝐶) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2625ralimdva 2554 . . . . 5 (𝐶𝐴 → (∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2713, 26syld 45 . . . 4 (𝐶𝐴 → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦)))
2810, 12, 27sylc 62 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))
2910, 3sstrd 3177 . . . 4 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → 𝐶 ⊆ ℂ)
30 elcncf 14356 . . . 4 ((𝐶 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝐹𝐶) ∈ (𝐶cn𝐵) ↔ ((𝐹𝐶):𝐶𝐵 ∧ ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))))
3129, 5, 30syl2anc 411 . . 3 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → ((𝐹𝐶) ∈ (𝐶cn𝐵) ↔ ((𝐹𝐶):𝐶𝐵 ∧ ∀𝑥𝐶𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐶 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘(((𝐹𝐶)‘𝑥) − ((𝐹𝐶)‘𝑤))) < 𝑦))))
3211, 28, 31mpbir2and 945 . 2 ((𝐶𝐴𝐹 ∈ (𝐴cn𝐵)) → (𝐹𝐶) ∈ (𝐶cn𝐵))
3332ex 115 1 (𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2158  wral 2465  wrex 2466  wss 3141   class class class wbr 4015  cres 4640  wf 5224  cfv 5228  (class class class)co 5888  cc 7823   < clt 8006  cmin 8142  +crp 9667  abscabs 11020  cnccncf 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-map 6664  df-cncf 14354
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator