Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smoel2 | GIF version |
Description: A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
smoel2 | ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 5297 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | 1 | eleq2d 2240 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
3 | 2 | anbi1d 462 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵) ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) |
4 | 3 | biimprd 157 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵))) |
5 | smoel 6279 | . . . 4 ⊢ ((Smo 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) | |
6 | 5 | 3expib 1201 | . . 3 ⊢ (Smo 𝐹 → ((𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ (𝐹‘𝐵))) |
7 | 4, 6 | sylan9 407 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ (𝐹‘𝐵))) |
8 | 7 | imp 123 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 dom cdm 4611 Fn wfn 5193 ‘cfv 5198 Smo wsmo 6264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-tr 4088 df-iord 4351 df-iota 5160 df-fn 5201 df-fv 5206 df-smo 6265 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |