![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > smoel2 | GIF version |
Description: A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
smoel2 | ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 5147 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | 1 | eleq2d 2164 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
3 | 2 | anbi1d 454 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵) ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) |
4 | 3 | biimprd 157 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵))) |
5 | smoel 6103 | . . . 4 ⊢ ((Smo 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) | |
6 | 5 | 3expib 1149 | . . 3 ⊢ (Smo 𝐹 → ((𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ (𝐹‘𝐵))) |
7 | 4, 6 | sylan9 402 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ (𝐹‘𝐵))) |
8 | 7 | imp 123 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1445 dom cdm 4467 Fn wfn 5044 ‘cfv 5049 Smo wsmo 6088 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-tr 3959 df-iord 4217 df-iota 5014 df-fn 5052 df-fv 5057 df-smo 6089 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |