ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoel2 GIF version

Theorem smoel2 6106
Description: A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smoel2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵𝐴𝐶𝐵)) → (𝐹𝐶) ∈ (𝐹𝐵))

Proof of Theorem smoel2
StepHypRef Expression
1 fndm 5147 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
21eleq2d 2164 . . . . 5 (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹𝐵𝐴))
32anbi1d 454 . . . 4 (𝐹 Fn 𝐴 → ((𝐵 ∈ dom 𝐹𝐶𝐵) ↔ (𝐵𝐴𝐶𝐵)))
43biimprd 157 . . 3 (𝐹 Fn 𝐴 → ((𝐵𝐴𝐶𝐵) → (𝐵 ∈ dom 𝐹𝐶𝐵)))
5 smoel 6103 . . . 4 ((Smo 𝐹𝐵 ∈ dom 𝐹𝐶𝐵) → (𝐹𝐶) ∈ (𝐹𝐵))
653expib 1149 . . 3 (Smo 𝐹 → ((𝐵 ∈ dom 𝐹𝐶𝐵) → (𝐹𝐶) ∈ (𝐹𝐵)))
74, 6sylan9 402 . 2 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝐵𝐴𝐶𝐵) → (𝐹𝐶) ∈ (𝐹𝐵)))
87imp 123 1 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵𝐴𝐶𝐵)) → (𝐹𝐶) ∈ (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1445  dom cdm 4467   Fn wfn 5044  cfv 5049  Smo wsmo 6088
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-tr 3959  df-iord 4217  df-iota 5014  df-fn 5052  df-fv 5057  df-smo 6089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator