ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoel2 GIF version

Theorem smoel2 6329
Description: A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smoel2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵𝐴𝐶𝐵)) → (𝐹𝐶) ∈ (𝐹𝐵))

Proof of Theorem smoel2
StepHypRef Expression
1 fndm 5334 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
21eleq2d 2259 . . . . 5 (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹𝐵𝐴))
32anbi1d 465 . . . 4 (𝐹 Fn 𝐴 → ((𝐵 ∈ dom 𝐹𝐶𝐵) ↔ (𝐵𝐴𝐶𝐵)))
43biimprd 158 . . 3 (𝐹 Fn 𝐴 → ((𝐵𝐴𝐶𝐵) → (𝐵 ∈ dom 𝐹𝐶𝐵)))
5 smoel 6326 . . . 4 ((Smo 𝐹𝐵 ∈ dom 𝐹𝐶𝐵) → (𝐹𝐶) ∈ (𝐹𝐵))
653expib 1208 . . 3 (Smo 𝐹 → ((𝐵 ∈ dom 𝐹𝐶𝐵) → (𝐹𝐶) ∈ (𝐹𝐵)))
74, 6sylan9 409 . 2 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝐵𝐴𝐶𝐵) → (𝐹𝐶) ∈ (𝐹𝐵)))
87imp 124 1 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵𝐴𝐶𝐵)) → (𝐹𝐶) ∈ (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2160  dom cdm 4644   Fn wfn 5230  cfv 5235  Smo wsmo 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-tr 4117  df-iord 4384  df-iota 5196  df-fn 5238  df-fv 5243  df-smo 6312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator