![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > smoel2 | GIF version |
Description: A strictly monotone ordinal function preserves the epsilon relation. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
smoel2 | ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 5334 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | 1 | eleq2d 2259 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
3 | 2 | anbi1d 465 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ((𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵) ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) |
4 | 3 | biimprd 158 | . . 3 ⊢ (𝐹 Fn 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵))) |
5 | smoel 6326 | . . . 4 ⊢ ((Smo 𝐹 ∧ 𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) | |
6 | 5 | 3expib 1208 | . . 3 ⊢ (Smo 𝐹 → ((𝐵 ∈ dom 𝐹 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ (𝐹‘𝐵))) |
7 | 4, 6 | sylan9 409 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (𝐹‘𝐶) ∈ (𝐹‘𝐵))) |
8 | 7 | imp 124 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵)) → (𝐹‘𝐶) ∈ (𝐹‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2160 dom cdm 4644 Fn wfn 5230 ‘cfv 5235 Smo wsmo 6311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-tr 4117 df-iord 4384 df-iota 5196 df-fn 5238 df-fv 5243 df-smo 6312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |