ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc3v GIF version

Theorem rspc3v 2846
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
Hypotheses
Ref Expression
rspc3v.1 (𝑥 = 𝐴 → (𝜑𝜒))
rspc3v.2 (𝑦 = 𝐵 → (𝜒𝜃))
rspc3v.3 (𝑧 = 𝐶 → (𝜃𝜓))
Assertion
Ref Expression
rspc3v ((𝐴𝑅𝐵𝑆𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
Distinct variable groups:   𝜓,𝑧   𝜒,𝑥   𝜃,𝑦   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝜒(𝑦,𝑧)   𝜃(𝑥,𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑦,𝑧)   𝑆(𝑧)

Proof of Theorem rspc3v
StepHypRef Expression
1 rspc3v.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜒))
21ralbidv 2466 . . . 4 (𝑥 = 𝐴 → (∀𝑧𝑇 𝜑 ↔ ∀𝑧𝑇 𝜒))
3 rspc3v.2 . . . . 5 (𝑦 = 𝐵 → (𝜒𝜃))
43ralbidv 2466 . . . 4 (𝑦 = 𝐵 → (∀𝑧𝑇 𝜒 ↔ ∀𝑧𝑇 𝜃))
52, 4rspc2v 2843 . . 3 ((𝐴𝑅𝐵𝑆) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑 → ∀𝑧𝑇 𝜃))
6 rspc3v.3 . . . 4 (𝑧 = 𝐶 → (𝜃𝜓))
76rspcv 2826 . . 3 (𝐶𝑇 → (∀𝑧𝑇 𝜃𝜓))
85, 7sylan9 407 . 2 (((𝐴𝑅𝐵𝑆) ∧ 𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
983impa 1184 1 ((𝐴𝑅𝐵𝑆𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728
This theorem is referenced by:  swopolem  4283  isopolem  5790  isosolem  5792  caovassg  6000  caovcang  6003  caovordig  6007  caovordg  6009  caovdig  6016  caovdirg  6019  caoftrn  6075  psmettri2  12968  xmettri2  13001
  Copyright terms: Public domain W3C validator