Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspc3v | GIF version |
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.) |
Ref | Expression |
---|---|
rspc3v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc3v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
rspc3v.3 | ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc3v | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc3v.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | 1 | ralbidv 2470 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑧 ∈ 𝑇 𝜑 ↔ ∀𝑧 ∈ 𝑇 𝜒)) |
3 | rspc3v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
4 | 3 | ralbidv 2470 | . . . 4 ⊢ (𝑦 = 𝐵 → (∀𝑧 ∈ 𝑇 𝜒 ↔ ∀𝑧 ∈ 𝑇 𝜃)) |
5 | 2, 4 | rspc2v 2847 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → ∀𝑧 ∈ 𝑇 𝜃)) |
6 | rspc3v.3 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) | |
7 | 6 | rspcv 2830 | . . 3 ⊢ (𝐶 ∈ 𝑇 → (∀𝑧 ∈ 𝑇 𝜃 → 𝜓)) |
8 | 5, 7 | sylan9 407 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
9 | 8 | 3impa 1189 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 |
This theorem is referenced by: swopolem 4290 isopolem 5801 isosolem 5803 caovassg 6011 caovcang 6014 caovordig 6018 caovordg 6020 caovdig 6027 caovdirg 6030 caoftrn 6086 sgrpass 12649 psmettri2 13122 xmettri2 13155 |
Copyright terms: Public domain | W3C validator |