ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc3v GIF version

Theorem rspc3v 2923
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
Hypotheses
Ref Expression
rspc3v.1 (𝑥 = 𝐴 → (𝜑𝜒))
rspc3v.2 (𝑦 = 𝐵 → (𝜒𝜃))
rspc3v.3 (𝑧 = 𝐶 → (𝜃𝜓))
Assertion
Ref Expression
rspc3v ((𝐴𝑅𝐵𝑆𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
Distinct variable groups:   𝜓,𝑧   𝜒,𝑥   𝜃,𝑦   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝜒(𝑦,𝑧)   𝜃(𝑥,𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑦,𝑧)   𝑆(𝑧)

Proof of Theorem rspc3v
StepHypRef Expression
1 rspc3v.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜒))
21ralbidv 2530 . . . 4 (𝑥 = 𝐴 → (∀𝑧𝑇 𝜑 ↔ ∀𝑧𝑇 𝜒))
3 rspc3v.2 . . . . 5 (𝑦 = 𝐵 → (𝜒𝜃))
43ralbidv 2530 . . . 4 (𝑦 = 𝐵 → (∀𝑧𝑇 𝜒 ↔ ∀𝑧𝑇 𝜃))
52, 4rspc2v 2920 . . 3 ((𝐴𝑅𝐵𝑆) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑 → ∀𝑧𝑇 𝜃))
6 rspc3v.3 . . . 4 (𝑧 = 𝐶 → (𝜃𝜓))
76rspcv 2903 . . 3 (𝐶𝑇 → (∀𝑧𝑇 𝜃𝜓))
85, 7sylan9 409 . 2 (((𝐴𝑅𝐵𝑆) ∧ 𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
983impa 1218 1 ((𝐴𝑅𝐵𝑆𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801
This theorem is referenced by:  swopolem  4396  isopolem  5952  isosolem  5954  caovassg  6170  caovcang  6173  caovordig  6177  caovordg  6179  caovdig  6186  caovdirg  6189  caoftrn  6257  sgrpass  13449  rngdi  13911  rngdir  13912  islmodd  14265  rmodislmodlem  14322  rmodislmod  14323  lssclg  14336  psmettri2  15010  xmettri2  15043
  Copyright terms: Public domain W3C validator