ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elssuni GIF version

Theorem elssuni 3817
Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elssuni (𝐴𝐵𝐴 𝐵)

Proof of Theorem elssuni
StepHypRef Expression
1 ssid 3162 . 2 𝐴𝐴
2 ssuni 3811 . 2 ((𝐴𝐴𝐴𝐵) → 𝐴 𝐵)
31, 2mpan 421 1 (𝐴𝐵𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  wss 3116   cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790
This theorem is referenced by:  unissel  3818  ssunieq  3822  pwuni  4171  pwel  4196  uniopel  4234  iunpw  4458  dmrnssfld  4867  fvssunirng  5501  relfvssunirn  5502  sefvex  5507  riotaexg  5802  pwuninel2  6250  tfrlem9  6287  tfrexlem  6302  sbthlem1  6922  sbthlem2  6923  unirnioo  9909  eltopss  12647  toponss  12664  isbasis3g  12684  baspartn  12688  bastg  12701  tgcl  12704  epttop  12730  difopn  12748  ssntr  12762  isopn3  12765  isopn3i  12775  neiuni  12801  resttopon  12811  restopn2  12823  ssidcn  12850  lmtopcnp  12890  txuni2  12896  hmeoimaf1o  12954  tgioo  13186  bj-elssuniab  13672
  Copyright terms: Public domain W3C validator