| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elssuni | GIF version | ||
| Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| elssuni | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3215 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | ssuni 3875 | . 2 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ⊆ wss 3168 ∪ cuni 3853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3174 df-ss 3181 df-uni 3854 |
| This theorem is referenced by: unissel 3882 ssunieq 3886 pwuni 4241 pwel 4267 uniopel 4306 iunpw 4532 dmrnssfld 4947 iotaexab 5256 fvssunirng 5601 relfvssunirn 5602 sefvex 5607 riotaexg 5913 pwuninel2 6378 tfrlem9 6415 tfrexlem 6430 sbthlem1 7071 sbthlem2 7072 unirnioo 10108 eltopss 14531 toponss 14548 isbasis3g 14568 baspartn 14572 bastg 14583 tgcl 14586 epttop 14612 difopn 14630 ssntr 14644 isopn3 14647 isopn3i 14657 neiuni 14683 resttopon 14693 restopn2 14705 ssidcn 14732 lmtopcnp 14772 txuni2 14778 hmeoimaf1o 14836 tgioo 15076 bj-elssuniab 15841 |
| Copyright terms: Public domain | W3C validator |