ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elssuni GIF version

Theorem elssuni 3864
Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elssuni (𝐴𝐵𝐴 𝐵)

Proof of Theorem elssuni
StepHypRef Expression
1 ssid 3200 . 2 𝐴𝐴
2 ssuni 3858 . 2 ((𝐴𝐴𝐴𝐵) → 𝐴 𝐵)
31, 2mpan 424 1 (𝐴𝐵𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wss 3154   cuni 3836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160  df-ss 3167  df-uni 3837
This theorem is referenced by:  unissel  3865  ssunieq  3869  pwuni  4222  pwel  4248  uniopel  4286  iunpw  4512  dmrnssfld  4926  iotaexab  5234  fvssunirng  5570  relfvssunirn  5571  sefvex  5576  riotaexg  5878  pwuninel2  6337  tfrlem9  6374  tfrexlem  6389  sbthlem1  7018  sbthlem2  7019  unirnioo  10042  eltopss  14188  toponss  14205  isbasis3g  14225  baspartn  14229  bastg  14240  tgcl  14243  epttop  14269  difopn  14287  ssntr  14301  isopn3  14304  isopn3i  14314  neiuni  14340  resttopon  14350  restopn2  14362  ssidcn  14389  lmtopcnp  14429  txuni2  14435  hmeoimaf1o  14493  tgioo  14733  bj-elssuniab  15353
  Copyright terms: Public domain W3C validator