| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elssuni | GIF version | ||
| Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| elssuni | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3204 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | ssuni 3862 | . 2 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 ∪ cuni 3840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-uni 3841 |
| This theorem is referenced by: unissel 3869 ssunieq 3873 pwuni 4226 pwel 4252 uniopel 4290 iunpw 4516 dmrnssfld 4930 iotaexab 5238 fvssunirng 5576 relfvssunirn 5577 sefvex 5582 riotaexg 5884 pwuninel2 6349 tfrlem9 6386 tfrexlem 6401 sbthlem1 7032 sbthlem2 7033 unirnioo 10067 eltopss 14353 toponss 14370 isbasis3g 14390 baspartn 14394 bastg 14405 tgcl 14408 epttop 14434 difopn 14452 ssntr 14466 isopn3 14469 isopn3i 14479 neiuni 14505 resttopon 14515 restopn2 14527 ssidcn 14554 lmtopcnp 14594 txuni2 14600 hmeoimaf1o 14658 tgioo 14898 bj-elssuniab 15545 |
| Copyright terms: Public domain | W3C validator |