Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elssuni | GIF version |
Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
elssuni | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3167 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | ssuni 3818 | . 2 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | mpan 422 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ⊆ wss 3121 ∪ cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 |
This theorem is referenced by: unissel 3825 ssunieq 3829 pwuni 4178 pwel 4203 uniopel 4241 iunpw 4465 dmrnssfld 4874 fvssunirng 5511 relfvssunirn 5512 sefvex 5517 riotaexg 5813 pwuninel2 6261 tfrlem9 6298 tfrexlem 6313 sbthlem1 6934 sbthlem2 6935 unirnioo 9930 eltopss 12801 toponss 12818 isbasis3g 12838 baspartn 12842 bastg 12855 tgcl 12858 epttop 12884 difopn 12902 ssntr 12916 isopn3 12919 isopn3i 12929 neiuni 12955 resttopon 12965 restopn2 12977 ssidcn 13004 lmtopcnp 13044 txuni2 13050 hmeoimaf1o 13108 tgioo 13340 bj-elssuniab 13826 |
Copyright terms: Public domain | W3C validator |