![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elssuni | GIF version |
Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
elssuni | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3199 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | ssuni 3857 | . 2 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ⊆ wss 3153 ∪ cuni 3835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-uni 3836 |
This theorem is referenced by: unissel 3864 ssunieq 3868 pwuni 4221 pwel 4247 uniopel 4285 iunpw 4511 dmrnssfld 4925 iotaexab 5233 fvssunirng 5569 relfvssunirn 5570 sefvex 5575 riotaexg 5877 pwuninel2 6335 tfrlem9 6372 tfrexlem 6387 sbthlem1 7016 sbthlem2 7017 unirnioo 10039 eltopss 14177 toponss 14194 isbasis3g 14214 baspartn 14218 bastg 14229 tgcl 14232 epttop 14258 difopn 14276 ssntr 14290 isopn3 14293 isopn3i 14303 neiuni 14329 resttopon 14339 restopn2 14351 ssidcn 14378 lmtopcnp 14418 txuni2 14424 hmeoimaf1o 14482 tgioo 14714 bj-elssuniab 15283 |
Copyright terms: Public domain | W3C validator |