| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elssuni | GIF version | ||
| Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| elssuni | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3203 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | ssuni 3861 | . 2 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 ∪ cuni 3839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 |
| This theorem is referenced by: unissel 3868 ssunieq 3872 pwuni 4225 pwel 4251 uniopel 4289 iunpw 4515 dmrnssfld 4929 iotaexab 5237 fvssunirng 5573 relfvssunirn 5574 sefvex 5579 riotaexg 5881 pwuninel2 6340 tfrlem9 6377 tfrexlem 6392 sbthlem1 7023 sbthlem2 7024 unirnioo 10048 eltopss 14245 toponss 14262 isbasis3g 14282 baspartn 14286 bastg 14297 tgcl 14300 epttop 14326 difopn 14344 ssntr 14358 isopn3 14361 isopn3i 14371 neiuni 14397 resttopon 14407 restopn2 14419 ssidcn 14446 lmtopcnp 14486 txuni2 14492 hmeoimaf1o 14550 tgioo 14790 bj-elssuniab 15437 |
| Copyright terms: Public domain | W3C validator |