Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elssuni | GIF version |
Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
elssuni | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3162 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | ssuni 3811 | . 2 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ ∪ 𝐵) | |
3 | 1, 2 | mpan 421 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ⊆ wss 3116 ∪ cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 |
This theorem is referenced by: unissel 3818 ssunieq 3822 pwuni 4171 pwel 4196 uniopel 4234 iunpw 4458 dmrnssfld 4867 fvssunirng 5501 relfvssunirn 5502 sefvex 5507 riotaexg 5802 pwuninel2 6250 tfrlem9 6287 tfrexlem 6302 sbthlem1 6922 sbthlem2 6923 unirnioo 9909 eltopss 12647 toponss 12664 isbasis3g 12684 baspartn 12688 bastg 12701 tgcl 12704 epttop 12730 difopn 12748 ssntr 12762 isopn3 12765 isopn3i 12775 neiuni 12801 resttopon 12811 restopn2 12823 ssidcn 12850 lmtopcnp 12890 txuni2 12896 hmeoimaf1o 12954 tgioo 13186 bj-elssuniab 13672 |
Copyright terms: Public domain | W3C validator |