| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elssuni | GIF version | ||
| Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| elssuni | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3244 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | ssuni 3910 | . 2 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ⊆ wss 3197 ∪ cuni 3888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-uni 3889 |
| This theorem is referenced by: unissel 3917 ssunieq 3921 pwuni 4276 pwel 4304 uniopel 4343 iunpw 4571 dmrnssfld 4987 iotaexab 5297 fvssunirng 5644 relfvssunirn 5645 sefvex 5650 riotaexg 5964 pwuninel2 6434 tfrlem9 6471 tfrexlem 6486 sbthlem1 7132 sbthlem2 7133 unirnioo 10177 eltopss 14691 toponss 14708 isbasis3g 14728 baspartn 14732 bastg 14743 tgcl 14746 epttop 14772 difopn 14790 ssntr 14804 isopn3 14807 isopn3i 14817 neiuni 14843 resttopon 14853 restopn2 14865 ssidcn 14892 lmtopcnp 14932 txuni2 14938 hmeoimaf1o 14996 tgioo 15236 bj-elssuniab 16179 |
| Copyright terms: Public domain | W3C validator |