| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elssuni | GIF version | ||
| Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| elssuni | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3244 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | ssuni 3909 | . 2 ⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 1, 2 | mpan 424 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ⊆ wss 3197 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 |
| This theorem is referenced by: unissel 3916 ssunieq 3920 pwuni 4275 pwel 4303 uniopel 4342 iunpw 4568 dmrnssfld 4983 iotaexab 5293 fvssunirng 5638 relfvssunirn 5639 sefvex 5644 riotaexg 5951 pwuninel2 6418 tfrlem9 6455 tfrexlem 6470 sbthlem1 7112 sbthlem2 7113 unirnioo 10157 eltopss 14668 toponss 14685 isbasis3g 14705 baspartn 14709 bastg 14720 tgcl 14723 epttop 14749 difopn 14767 ssntr 14781 isopn3 14784 isopn3i 14794 neiuni 14820 resttopon 14830 restopn2 14842 ssidcn 14869 lmtopcnp 14909 txuni2 14915 hmeoimaf1o 14973 tgioo 15213 bj-elssuniab 16085 |
| Copyright terms: Public domain | W3C validator |