ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elssuni GIF version

Theorem elssuni 3867
Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elssuni (𝐴𝐵𝐴 𝐵)

Proof of Theorem elssuni
StepHypRef Expression
1 ssid 3203 . 2 𝐴𝐴
2 ssuni 3861 . 2 ((𝐴𝐴𝐴𝐵) → 𝐴 𝐵)
31, 2mpan 424 1 (𝐴𝐵𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wss 3157   cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840
This theorem is referenced by:  unissel  3868  ssunieq  3872  pwuni  4225  pwel  4251  uniopel  4289  iunpw  4515  dmrnssfld  4929  iotaexab  5237  fvssunirng  5573  relfvssunirn  5574  sefvex  5579  riotaexg  5881  pwuninel2  6340  tfrlem9  6377  tfrexlem  6392  sbthlem1  7023  sbthlem2  7024  unirnioo  10048  eltopss  14245  toponss  14262  isbasis3g  14282  baspartn  14286  bastg  14297  tgcl  14300  epttop  14326  difopn  14344  ssntr  14358  isopn3  14361  isopn3i  14371  neiuni  14397  resttopon  14407  restopn2  14419  ssidcn  14446  lmtopcnp  14486  txuni2  14492  hmeoimaf1o  14550  tgioo  14790  bj-elssuniab  15437
  Copyright terms: Public domain W3C validator