| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqssd | GIF version | ||
| Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
| Ref | Expression |
|---|---|
| eqssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| eqssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| eqssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | eqssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 3 | eqss 3199 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqrd 3202 eqelssd 3203 unissel 3869 intmin 3895 int0el 3905 pwntru 4233 exmidundif 4240 exmidundifim 4241 dmcosseq 4938 relfld 5199 imadif 5339 imain 5341 fimacnv 5694 fo2ndf 6294 tposeq 6314 tfrlemibfn 6395 tfrlemi14d 6400 tfr1onlembfn 6411 tfri1dALT 6418 tfrcllembfn 6424 dcdifsnid 6571 fisbth 6953 en2eqpr 6977 exmidpw 6978 exmidpweq 6979 undifdcss 6993 nnnninfeq2 7204 en2other2 7275 exmidontriimlem3 7306 addnqpr 7645 mulnqpr 7661 distrprg 7672 ltexpri 7697 addcanprg 7700 recexprlemex 7721 aptipr 7725 cauappcvgprlemladd 7742 fzopth 10153 fzosplit 10270 fzouzsplit 10272 zsupssdc 10345 frecuzrdgtcl 10521 frecuzrdgdomlem 10526 phimullem 12418 structcnvcnv 12719 imasaddfnlemg 13016 gsumvallem2 13195 trivsubgd 13406 trivsubgsnd 13407 trivnsgd 13423 kerf1ghm 13480 conjnmz 13485 lspun 14034 lspsn 14048 lspsnneg 14052 lsp0 14055 lsslsp 14061 mulgrhm2 14242 znrrg 14292 eltg4i 14375 unitg 14382 tgtop 14388 tgidm 14394 basgen 14400 2basgeng 14402 epttop 14410 ntrin 14444 isopn3 14445 neiuni 14481 tgrest 14489 resttopon 14491 rest0 14499 txdis 14597 hmeontr 14633 xmettx 14830 findset 15675 pwtrufal 15728 pwf1oexmid 15730 |
| Copyright terms: Public domain | W3C validator |