| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqssd | GIF version | ||
| Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
| Ref | Expression |
|---|---|
| eqssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| eqssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| eqssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | eqssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 3 | eqss 3216 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: eqrd 3219 eqelssd 3220 unissel 3893 intmin 3919 int0el 3929 pwntru 4259 exmidundif 4266 exmidundifim 4267 dmcosseq 4969 relfld 5230 imadif 5373 imain 5375 fimacnv 5732 fo2ndf 6336 tposeq 6356 tfrlemibfn 6437 tfrlemi14d 6442 tfr1onlembfn 6453 tfri1dALT 6460 tfrcllembfn 6466 dcdifsnid 6613 fisbth 7006 en2eqpr 7030 exmidpw 7031 exmidpweq 7032 undifdcss 7046 nnnninfeq2 7257 en2other2 7335 exmidontriimlem3 7366 pw1m 7370 addnqpr 7709 mulnqpr 7725 distrprg 7736 ltexpri 7761 addcanprg 7764 recexprlemex 7785 aptipr 7789 cauappcvgprlemladd 7806 fzopth 10218 fzosplit 10336 fzouzsplit 10338 zsupssdc 10418 frecuzrdgtcl 10594 frecuzrdgdomlem 10599 ccatrn 11103 phimullem 12662 structcnvcnv 12963 imasaddfnlemg 13261 gsumvallem2 13440 trivsubgd 13651 trivsubgsnd 13652 trivnsgd 13668 kerf1ghm 13725 conjnmz 13730 lspun 14279 lspsn 14293 lspsnneg 14297 lsp0 14300 lsslsp 14306 mulgrhm2 14487 znrrg 14537 eltg4i 14642 unitg 14649 tgtop 14655 tgidm 14661 basgen 14667 2basgeng 14669 epttop 14677 ntrin 14711 isopn3 14712 neiuni 14748 tgrest 14756 resttopon 14758 rest0 14766 txdis 14864 hmeontr 14900 xmettx 15097 findset 16080 pwtrufal 16136 pwf1oexmid 16138 |
| Copyright terms: Public domain | W3C validator |