![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqssd | GIF version |
Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
Ref | Expression |
---|---|
eqssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
eqssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
eqssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | eqssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
3 | eqss 3194 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: eqrd 3197 eqelssd 3198 unissel 3864 intmin 3890 int0el 3900 pwntru 4228 exmidundif 4235 exmidundifim 4236 dmcosseq 4933 relfld 5194 imadif 5334 imain 5336 fimacnv 5687 fo2ndf 6280 tposeq 6300 tfrlemibfn 6381 tfrlemi14d 6386 tfr1onlembfn 6397 tfri1dALT 6404 tfrcllembfn 6410 dcdifsnid 6557 fisbth 6939 en2eqpr 6963 exmidpw 6964 exmidpweq 6965 undifdcss 6979 nnnninfeq2 7188 en2other2 7256 exmidontriimlem3 7283 addnqpr 7621 mulnqpr 7637 distrprg 7648 ltexpri 7673 addcanprg 7676 recexprlemex 7697 aptipr 7701 cauappcvgprlemladd 7718 fzopth 10127 fzosplit 10244 fzouzsplit 10246 frecuzrdgtcl 10483 frecuzrdgdomlem 10488 zsupssdc 12091 phimullem 12363 structcnvcnv 12634 imasaddfnlemg 12897 gsumvallem2 13065 trivsubgd 13270 trivsubgsnd 13271 trivnsgd 13287 kerf1ghm 13344 conjnmz 13349 lspun 13898 lspsn 13912 lspsnneg 13916 lsp0 13919 lsslsp 13925 mulgrhm2 14098 znrrg 14148 eltg4i 14223 unitg 14230 tgtop 14236 tgidm 14242 basgen 14248 2basgeng 14250 epttop 14258 ntrin 14292 isopn3 14293 neiuni 14329 tgrest 14337 resttopon 14339 rest0 14347 txdis 14445 hmeontr 14481 xmettx 14678 findset 15437 pwtrufal 15488 pwf1oexmid 15490 |
Copyright terms: Public domain | W3C validator |