| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqssd | GIF version | ||
| Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
| Ref | Expression |
|---|---|
| eqssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| eqssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| eqssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | eqssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 3 | eqss 3239 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqrd 3242 eqelssd 3243 unissel 3916 intmin 3942 int0el 3952 pwntru 4282 exmidundif 4289 exmidundifim 4290 dmcosseq 4995 relfld 5256 imadif 5400 imain 5402 fimacnv 5763 fo2ndf 6371 tposeq 6391 tfrlemibfn 6472 tfrlemi14d 6477 tfr1onlembfn 6488 tfri1dALT 6495 tfrcllembfn 6501 dcdifsnid 6648 fisbth 7041 en2eqpr 7065 exmidpw 7066 exmidpweq 7067 undifdcss 7081 nnnninfeq2 7292 en2other2 7370 exmidontriimlem3 7401 pw1m 7405 addnqpr 7744 mulnqpr 7760 distrprg 7771 ltexpri 7796 addcanprg 7799 recexprlemex 7820 aptipr 7824 cauappcvgprlemladd 7841 fzopth 10253 fzosplit 10371 fzouzsplit 10373 zsupssdc 10453 frecuzrdgtcl 10629 frecuzrdgdomlem 10634 ccatrn 11139 phimullem 12742 structcnvcnv 13043 imasaddfnlemg 13342 gsumvallem2 13521 trivsubgd 13732 trivsubgsnd 13733 trivnsgd 13749 kerf1ghm 13806 conjnmz 13811 lspun 14360 lspsn 14374 lspsnneg 14378 lsp0 14381 lsslsp 14387 mulgrhm2 14568 znrrg 14618 eltg4i 14723 unitg 14730 tgtop 14736 tgidm 14742 basgen 14748 2basgeng 14750 epttop 14758 ntrin 14792 isopn3 14793 neiuni 14829 tgrest 14837 resttopon 14839 rest0 14847 txdis 14945 hmeontr 14981 xmettx 15178 findset 16266 pwtrufal 16322 pwf1oexmid 16324 |
| Copyright terms: Public domain | W3C validator |