Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqssd | GIF version |
Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
Ref | Expression |
---|---|
eqssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
eqssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
eqssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | eqssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
3 | eqss 3162 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
4 | 1, 2, 3 | sylanbrc 415 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: eqrd 3165 eqelssd 3166 unissel 3823 intmin 3849 int0el 3859 pwntru 4183 exmidundif 4190 exmidundifim 4191 dmcosseq 4880 relfld 5137 imadif 5276 imain 5278 fimacnv 5622 fo2ndf 6203 tposeq 6223 tfrlemibfn 6304 tfrlemi14d 6309 tfr1onlembfn 6320 tfri1dALT 6327 tfrcllembfn 6333 dcdifsnid 6480 fisbth 6857 en2eqpr 6881 exmidpw 6882 exmidpweq 6883 undifdcss 6896 nnnninfeq2 7101 en2other2 7160 exmidontriimlem3 7187 addnqpr 7510 mulnqpr 7526 distrprg 7537 ltexpri 7562 addcanprg 7565 recexprlemex 7586 aptipr 7590 cauappcvgprlemladd 7607 fzopth 10004 fzosplit 10120 fzouzsplit 10122 frecuzrdgtcl 10355 frecuzrdgdomlem 10360 zsupssdc 11896 phimullem 12166 structcnvcnv 12419 eltg4i 12808 unitg 12815 tgtop 12821 tgidm 12827 basgen 12833 2basgeng 12835 epttop 12843 ntrin 12877 isopn3 12878 neiuni 12914 tgrest 12922 resttopon 12924 rest0 12932 txdis 13030 hmeontr 13066 xmettx 13263 findset 13940 pwtrufal 13990 pwf1oexmid 13992 |
Copyright terms: Public domain | W3C validator |