| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqssd | GIF version | ||
| Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
| Ref | Expression |
|---|---|
| eqssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| eqssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| eqssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | eqssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 3 | eqss 3207 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: eqrd 3210 eqelssd 3211 unissel 3878 intmin 3904 int0el 3914 pwntru 4242 exmidundif 4249 exmidundifim 4250 dmcosseq 4949 relfld 5210 imadif 5353 imain 5355 fimacnv 5708 fo2ndf 6312 tposeq 6332 tfrlemibfn 6413 tfrlemi14d 6418 tfr1onlembfn 6429 tfri1dALT 6436 tfrcllembfn 6442 dcdifsnid 6589 fisbth 6979 en2eqpr 7003 exmidpw 7004 exmidpweq 7005 undifdcss 7019 nnnninfeq2 7230 en2other2 7303 exmidontriimlem3 7334 addnqpr 7673 mulnqpr 7689 distrprg 7700 ltexpri 7725 addcanprg 7728 recexprlemex 7749 aptipr 7753 cauappcvgprlemladd 7770 fzopth 10182 fzosplit 10299 fzouzsplit 10301 zsupssdc 10379 frecuzrdgtcl 10555 frecuzrdgdomlem 10560 ccatrn 11063 phimullem 12518 structcnvcnv 12819 imasaddfnlemg 13117 gsumvallem2 13296 trivsubgd 13507 trivsubgsnd 13508 trivnsgd 13524 kerf1ghm 13581 conjnmz 13586 lspun 14135 lspsn 14149 lspsnneg 14153 lsp0 14156 lsslsp 14162 mulgrhm2 14343 znrrg 14393 eltg4i 14498 unitg 14505 tgtop 14511 tgidm 14517 basgen 14523 2basgeng 14525 epttop 14533 ntrin 14567 isopn3 14568 neiuni 14604 tgrest 14612 resttopon 14614 rest0 14622 txdis 14720 hmeontr 14756 xmettx 14953 findset 15843 pwtrufal 15896 pwf1oexmid 15898 |
| Copyright terms: Public domain | W3C validator |