| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqssd | GIF version | ||
| Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
| Ref | Expression |
|---|---|
| eqssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| eqssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| eqssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | eqssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 3 | eqss 3198 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqrd 3201 eqelssd 3202 unissel 3868 intmin 3894 int0el 3904 pwntru 4232 exmidundif 4239 exmidundifim 4240 dmcosseq 4937 relfld 5198 imadif 5338 imain 5340 fimacnv 5691 fo2ndf 6285 tposeq 6305 tfrlemibfn 6386 tfrlemi14d 6391 tfr1onlembfn 6402 tfri1dALT 6409 tfrcllembfn 6415 dcdifsnid 6562 fisbth 6944 en2eqpr 6968 exmidpw 6969 exmidpweq 6970 undifdcss 6984 nnnninfeq2 7195 en2other2 7263 exmidontriimlem3 7290 addnqpr 7628 mulnqpr 7644 distrprg 7655 ltexpri 7680 addcanprg 7683 recexprlemex 7704 aptipr 7708 cauappcvgprlemladd 7725 fzopth 10136 fzosplit 10253 fzouzsplit 10255 zsupssdc 10328 frecuzrdgtcl 10504 frecuzrdgdomlem 10509 phimullem 12393 structcnvcnv 12694 imasaddfnlemg 12957 gsumvallem2 13125 trivsubgd 13330 trivsubgsnd 13331 trivnsgd 13347 kerf1ghm 13404 conjnmz 13409 lspun 13958 lspsn 13972 lspsnneg 13976 lsp0 13979 lsslsp 13985 mulgrhm2 14166 znrrg 14216 eltg4i 14291 unitg 14298 tgtop 14304 tgidm 14310 basgen 14316 2basgeng 14318 epttop 14326 ntrin 14360 isopn3 14361 neiuni 14397 tgrest 14405 resttopon 14407 rest0 14415 txdis 14513 hmeontr 14549 xmettx 14746 findset 15591 pwtrufal 15642 pwf1oexmid 15644 |
| Copyright terms: Public domain | W3C validator |