Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqssd | GIF version |
Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
Ref | Expression |
---|---|
eqssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
eqssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
eqssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | eqssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
3 | eqss 3162 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
4 | 1, 2, 3 | sylanbrc 415 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: eqrd 3165 eqelssd 3166 unissel 3825 intmin 3851 int0el 3861 pwntru 4185 exmidundif 4192 exmidundifim 4193 dmcosseq 4882 relfld 5139 imadif 5278 imain 5280 fimacnv 5625 fo2ndf 6206 tposeq 6226 tfrlemibfn 6307 tfrlemi14d 6312 tfr1onlembfn 6323 tfri1dALT 6330 tfrcllembfn 6336 dcdifsnid 6483 fisbth 6861 en2eqpr 6885 exmidpw 6886 exmidpweq 6887 undifdcss 6900 nnnninfeq2 7105 en2other2 7173 exmidontriimlem3 7200 addnqpr 7523 mulnqpr 7539 distrprg 7550 ltexpri 7575 addcanprg 7578 recexprlemex 7599 aptipr 7603 cauappcvgprlemladd 7620 fzopth 10017 fzosplit 10133 fzouzsplit 10135 frecuzrdgtcl 10368 frecuzrdgdomlem 10373 zsupssdc 11909 phimullem 12179 structcnvcnv 12432 eltg4i 12849 unitg 12856 tgtop 12862 tgidm 12868 basgen 12874 2basgeng 12876 epttop 12884 ntrin 12918 isopn3 12919 neiuni 12955 tgrest 12963 resttopon 12965 rest0 12973 txdis 13071 hmeontr 13107 xmettx 13304 findset 13980 pwtrufal 14030 pwf1oexmid 14032 |
Copyright terms: Public domain | W3C validator |