| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqssd | GIF version | ||
| Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
| Ref | Expression |
|---|---|
| eqssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| eqssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| eqssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | eqssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 3 | eqss 3199 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqrd 3202 eqelssd 3203 unissel 3869 intmin 3895 int0el 3905 pwntru 4233 exmidundif 4240 exmidundifim 4241 dmcosseq 4938 relfld 5199 imadif 5339 imain 5341 fimacnv 5694 fo2ndf 6294 tposeq 6314 tfrlemibfn 6395 tfrlemi14d 6400 tfr1onlembfn 6411 tfri1dALT 6418 tfrcllembfn 6424 dcdifsnid 6571 fisbth 6953 en2eqpr 6977 exmidpw 6978 exmidpweq 6979 undifdcss 6993 nnnninfeq2 7204 en2other2 7277 exmidontriimlem3 7308 addnqpr 7647 mulnqpr 7663 distrprg 7674 ltexpri 7699 addcanprg 7702 recexprlemex 7723 aptipr 7727 cauappcvgprlemladd 7744 fzopth 10155 fzosplit 10272 fzouzsplit 10274 zsupssdc 10347 frecuzrdgtcl 10523 frecuzrdgdomlem 10528 phimullem 12420 structcnvcnv 12721 imasaddfnlemg 13018 gsumvallem2 13197 trivsubgd 13408 trivsubgsnd 13409 trivnsgd 13425 kerf1ghm 13482 conjnmz 13487 lspun 14036 lspsn 14050 lspsnneg 14054 lsp0 14057 lsslsp 14063 mulgrhm2 14244 znrrg 14294 eltg4i 14399 unitg 14406 tgtop 14412 tgidm 14418 basgen 14424 2basgeng 14426 epttop 14434 ntrin 14468 isopn3 14469 neiuni 14505 tgrest 14513 resttopon 14515 rest0 14523 txdis 14621 hmeontr 14657 xmettx 14854 findset 15699 pwtrufal 15752 pwf1oexmid 15754 |
| Copyright terms: Public domain | W3C validator |