Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqssd | GIF version |
Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
Ref | Expression |
---|---|
eqssd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
eqssd.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
Ref | Expression |
---|---|
eqssd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | eqssd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
3 | eqss 3157 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
4 | 1, 2, 3 | sylanbrc 414 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: eqrd 3160 eqelssd 3161 unissel 3818 intmin 3844 int0el 3854 pwntru 4178 exmidundif 4185 exmidundifim 4186 dmcosseq 4875 relfld 5132 imadif 5268 imain 5270 fimacnv 5614 fo2ndf 6195 tposeq 6215 tfrlemibfn 6296 tfrlemi14d 6301 tfr1onlembfn 6312 tfri1dALT 6319 tfrcllembfn 6325 dcdifsnid 6472 fisbth 6849 en2eqpr 6873 exmidpw 6874 exmidpweq 6875 undifdcss 6888 nnnninfeq2 7093 en2other2 7152 exmidontriimlem3 7179 addnqpr 7502 mulnqpr 7518 distrprg 7529 ltexpri 7554 addcanprg 7557 recexprlemex 7578 aptipr 7582 cauappcvgprlemladd 7599 fzopth 9996 fzosplit 10112 fzouzsplit 10114 frecuzrdgtcl 10347 frecuzrdgdomlem 10352 zsupssdc 11887 phimullem 12157 structcnvcnv 12410 eltg4i 12695 unitg 12702 tgtop 12708 tgidm 12714 basgen 12720 2basgeng 12722 epttop 12730 ntrin 12764 isopn3 12765 neiuni 12801 tgrest 12809 resttopon 12811 rest0 12819 txdis 12917 hmeontr 12953 xmettx 13150 findset 13827 pwtrufal 13877 pwf1oexmid 13879 |
Copyright terms: Public domain | W3C validator |