![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unundi | GIF version |
Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
unundi | ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unidm 3290 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
2 | 1 | uneq1i 3297 | . 2 ⊢ ((𝐴 ∪ 𝐴) ∪ (𝐵 ∪ 𝐶)) = (𝐴 ∪ (𝐵 ∪ 𝐶)) |
3 | un4 3307 | . 2 ⊢ ((𝐴 ∪ 𝐴) ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) | |
4 | 2, 3 | eqtr3i 2210 | 1 ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∪ cun 3139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-un 3145 |
This theorem is referenced by: unfiin 6939 |
Copyright terms: Public domain | W3C validator |