Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  unundi GIF version

Theorem unundi 3145
 Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unundi (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem unundi
StepHypRef Expression
1 unidm 3127 . . 3 (𝐴𝐴) = 𝐴
21uneq1i 3134 . 2 ((𝐴𝐴) ∪ (𝐵𝐶)) = (𝐴 ∪ (𝐵𝐶))
3 un4 3144 . 2 ((𝐴𝐴) ∪ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
42, 3eqtr3i 2105 1 (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
 Colors of variables: wff set class Syntax hints:   = wceq 1285   ∪ cun 2982 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2614  df-un 2988 This theorem is referenced by:  unfiin  6561
 Copyright terms: Public domain W3C validator