ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unundi GIF version

Theorem unundi 3334
Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unundi (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem unundi
StepHypRef Expression
1 unidm 3316 . . 3 (𝐴𝐴) = 𝐴
21uneq1i 3323 . 2 ((𝐴𝐴) ∪ (𝐵𝐶)) = (𝐴 ∪ (𝐵𝐶))
3 un4 3333 . 2 ((𝐴𝐴) ∪ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
42, 3eqtr3i 2228 1 (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170
This theorem is referenced by:  unfiin  7023
  Copyright terms: Public domain W3C validator