| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unundi | GIF version | ||
| Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| unundi | ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unidm 3324 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
| 2 | 1 | uneq1i 3331 | . 2 ⊢ ((𝐴 ∪ 𝐴) ∪ (𝐵 ∪ 𝐶)) = (𝐴 ∪ (𝐵 ∪ 𝐶)) |
| 3 | un4 3341 | . 2 ⊢ ((𝐴 ∪ 𝐴) ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) | |
| 4 | 2, 3 | eqtr3i 2230 | 1 ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 |
| This theorem is referenced by: unfiin 7049 |
| Copyright terms: Public domain | W3C validator |