| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unundi | GIF version | ||
| Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| unundi | ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unidm 3315 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
| 2 | 1 | uneq1i 3322 | . 2 ⊢ ((𝐴 ∪ 𝐴) ∪ (𝐵 ∪ 𝐶)) = (𝐴 ∪ (𝐵 ∪ 𝐶)) |
| 3 | un4 3332 | . 2 ⊢ ((𝐴 ∪ 𝐴) ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) | |
| 4 | 2, 3 | eqtr3i 2227 | 1 ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = ((𝐴 ∪ 𝐵) ∪ (𝐴 ∪ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∪ cun 3163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 |
| This theorem is referenced by: unfiin 7022 |
| Copyright terms: Public domain | W3C validator |