ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unundi GIF version

Theorem unundi 3333
Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unundi (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))

Proof of Theorem unundi
StepHypRef Expression
1 unidm 3315 . . 3 (𝐴𝐴) = 𝐴
21uneq1i 3322 . 2 ((𝐴𝐴) ∪ (𝐵𝐶)) = (𝐴 ∪ (𝐵𝐶))
3 un4 3332 . 2 ((𝐴𝐴) ∪ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
42, 3eqtr3i 2227 1 (𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1372  cun 3163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169
This theorem is referenced by:  unfiin  7022
  Copyright terms: Public domain W3C validator