| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
| Ref | Expression |
|---|---|
| eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr3i | ⊢ 𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2211 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqtr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtri 2228 | 1 ⊢ 𝐵 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: 3eqtr3i 2236 3eqtr3ri 2237 unundi 3342 unundir 3343 inindi 3398 inindir 3399 difun1 3441 difabs 3445 notab 3451 dfrab2 3456 dif0 3539 difdifdirss 3553 tpidm13 3743 intmin2 3925 univ 4541 iunxpconst 4753 dmres 4999 rnresi 5058 cnvcnv 5154 rnresv 5161 cnvsn0 5170 cnvsn 5184 resdmres 5193 coi2 5218 coires1 5219 dfdm2 5236 isarep2 5380 ssimaex 5663 fnreseql 5713 fmptpr 5799 idref 5848 mpompt 6060 caov31 6159 xpexgALT 6241 cnvoprab 6343 frec0g 6506 unfiin 7049 xpfi 7055 endjusym 7224 halfnqq 7558 caucvgprlemm 7816 caucvgprprlemmu 7843 caucvgsr 7950 mvlladdi 8325 8th4div3 9291 nneoor 9510 nummac 9583 numadd 9585 numaddc 9586 nummul1c 9587 decbin0 9678 infrenegsupex 9750 xnn0nnen 10619 iseqvalcbv 10641 m1expcl2 10743 facnn 10909 fac0 10910 4bc3eq4 10955 fihasheq0 10975 resqrexlemcalc1 11440 sqrt1 11472 sqrt4 11473 sqrt9 11474 infxrnegsupex 11689 isumss2 11819 geo2sum2 11941 geoihalfsum 11948 sin0 12155 efival 12158 ef01bndlem 12182 cos2bnd 12186 sin4lt0 12193 flodddiv4 12362 2prm 12564 dec5dvds 12850 modxai 12854 mod2xi 12855 gcdi 12858 numexp2x 12863 decsplit 12867 znnen 12884 ennnfonelemhf1o 12899 setsslid 12998 ressressg 13022 metreslem 14967 retopbas 15110 cnfldms 15123 sinhalfpilem 15378 sincos6thpi 15429 sincos3rdpi 15430 lgsdir2lem3 15622 lgseisenlem1 15662 lgseisenlem2 15663 lgsquadlem1 15669 lgsquadlem2 15670 2lgsoddprmlem2 15698 |
| Copyright terms: Public domain | W3C validator |