Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr3i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
Ref | Expression |
---|---|
eqtr3i | ⊢ 𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2161 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqtr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
4 | 2, 3 | eqtri 2178 | 1 ⊢ 𝐵 = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-4 1490 ax-17 1506 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 |
This theorem is referenced by: 3eqtr3i 2186 3eqtr3ri 2187 unundi 3268 unundir 3269 inindi 3324 inindir 3325 difun1 3367 difabs 3371 notab 3377 dfrab2 3382 dif0 3464 difdifdirss 3478 tpidm13 3659 intmin2 3833 univ 4434 iunxpconst 4643 dmres 4884 opabresid 4916 rnresi 4940 cnvcnv 5035 rnresv 5042 cnvsn0 5051 cnvsn 5065 resdmres 5074 coi2 5099 coires1 5100 dfdm2 5117 isarep2 5254 ssimaex 5526 fnreseql 5574 fmptpr 5656 idref 5702 mpompt 5907 caov31 6004 xpexgALT 6075 cnvoprab 6175 frec0g 6338 unfiin 6863 xpfi 6867 endjusym 7030 halfnqq 7313 caucvgprlemm 7571 caucvgprprlemmu 7598 caucvgsr 7705 mvlladdi 8076 8th4div3 9035 nneoor 9249 nummac 9322 numadd 9324 numaddc 9325 nummul1c 9326 decbin0 9417 infrenegsupex 9488 iseqvalcbv 10338 m1expcl2 10423 facnn 10583 fac0 10584 4bc3eq4 10629 fihasheq0 10650 resqrexlemcalc1 10896 sqrt1 10928 sqrt4 10929 sqrt9 10930 infxrnegsupex 11142 isumss2 11272 geo2sum2 11394 geoihalfsum 11401 sin0 11608 efival 11611 ef01bndlem 11635 cos2bnd 11639 sin4lt0 11645 flodddiv4 11806 2prm 11984 znnen 12099 ennnfonelemhf1o 12114 setsslid 12200 metreslem 12740 retopbas 12883 sinhalfpilem 13072 sincos6thpi 13123 sincos3rdpi 13124 |
Copyright terms: Public domain | W3C validator |