Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr3i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
Ref | Expression |
---|---|
eqtr3i | ⊢ 𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2169 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqtr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
4 | 2, 3 | eqtri 2186 | 1 ⊢ 𝐵 = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: 3eqtr3i 2194 3eqtr3ri 2195 unundi 3283 unundir 3284 inindi 3339 inindir 3340 difun1 3382 difabs 3386 notab 3392 dfrab2 3397 dif0 3479 difdifdirss 3493 tpidm13 3676 intmin2 3850 univ 4454 iunxpconst 4664 dmres 4905 opabresid 4937 rnresi 4961 cnvcnv 5056 rnresv 5063 cnvsn0 5072 cnvsn 5086 resdmres 5095 coi2 5120 coires1 5121 dfdm2 5138 isarep2 5275 ssimaex 5547 fnreseql 5595 fmptpr 5677 idref 5725 mpompt 5934 caov31 6031 xpexgALT 6101 cnvoprab 6202 frec0g 6365 unfiin 6891 xpfi 6895 endjusym 7061 halfnqq 7351 caucvgprlemm 7609 caucvgprprlemmu 7636 caucvgsr 7743 mvlladdi 8116 8th4div3 9076 nneoor 9293 nummac 9366 numadd 9368 numaddc 9369 nummul1c 9370 decbin0 9461 infrenegsupex 9532 iseqvalcbv 10392 m1expcl2 10477 facnn 10640 fac0 10641 4bc3eq4 10686 fihasheq0 10707 resqrexlemcalc1 10956 sqrt1 10988 sqrt4 10989 sqrt9 10990 infxrnegsupex 11204 isumss2 11334 geo2sum2 11456 geoihalfsum 11463 sin0 11670 efival 11673 ef01bndlem 11697 cos2bnd 11701 sin4lt0 11707 flodddiv4 11871 2prm 12059 znnen 12331 ennnfonelemhf1o 12346 setsslid 12444 metreslem 13020 retopbas 13163 sinhalfpilem 13352 sincos6thpi 13403 sincos3rdpi 13404 lgsdir2lem3 13571 |
Copyright terms: Public domain | W3C validator |