| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqtr3i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) | 
| Ref | Expression | 
|---|---|
| eqtr3i.1 | ⊢ 𝐴 = 𝐵 | 
| eqtr3i.2 | ⊢ 𝐴 = 𝐶 | 
| Ref | Expression | 
|---|---|
| eqtr3i | ⊢ 𝐵 = 𝐶 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐴 | 
| 3 | eqtr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtri 2217 | 1 ⊢ 𝐵 = 𝐶 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: 3eqtr3i 2225 3eqtr3ri 2226 unundi 3324 unundir 3325 inindi 3380 inindir 3381 difun1 3423 difabs 3427 notab 3433 dfrab2 3438 dif0 3521 difdifdirss 3535 tpidm13 3722 intmin2 3900 univ 4511 iunxpconst 4723 dmres 4967 rnresi 5026 cnvcnv 5122 rnresv 5129 cnvsn0 5138 cnvsn 5152 resdmres 5161 coi2 5186 coires1 5187 dfdm2 5204 isarep2 5345 ssimaex 5622 fnreseql 5672 fmptpr 5754 idref 5803 mpompt 6014 caov31 6113 xpexgALT 6190 cnvoprab 6292 frec0g 6455 unfiin 6987 xpfi 6993 endjusym 7162 halfnqq 7477 caucvgprlemm 7735 caucvgprprlemmu 7762 caucvgsr 7869 mvlladdi 8244 8th4div3 9210 nneoor 9428 nummac 9501 numadd 9503 numaddc 9504 nummul1c 9505 decbin0 9596 infrenegsupex 9668 xnn0nnen 10529 iseqvalcbv 10551 m1expcl2 10653 facnn 10819 fac0 10820 4bc3eq4 10865 fihasheq0 10885 resqrexlemcalc1 11179 sqrt1 11211 sqrt4 11212 sqrt9 11213 infxrnegsupex 11428 isumss2 11558 geo2sum2 11680 geoihalfsum 11687 sin0 11894 efival 11897 ef01bndlem 11921 cos2bnd 11925 sin4lt0 11932 flodddiv4 12101 2prm 12295 dec5dvds 12581 modxai 12585 mod2xi 12586 gcdi 12589 numexp2x 12594 decsplit 12598 znnen 12615 ennnfonelemhf1o 12630 setsslid 12729 ressressg 12753 metreslem 14616 retopbas 14759 cnfldms 14772 sinhalfpilem 15027 sincos6thpi 15078 sincos3rdpi 15079 lgsdir2lem3 15271 lgseisenlem1 15311 lgseisenlem2 15312 lgsquadlem1 15318 lgsquadlem2 15319 2lgsoddprmlem2 15347 | 
| Copyright terms: Public domain | W3C validator |