| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
| Ref | Expression |
|---|---|
| eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr3i | ⊢ 𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2209 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqtr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtri 2226 | 1 ⊢ 𝐵 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: 3eqtr3i 2234 3eqtr3ri 2235 unundi 3334 unundir 3335 inindi 3390 inindir 3391 difun1 3433 difabs 3437 notab 3443 dfrab2 3448 dif0 3531 difdifdirss 3545 tpidm13 3733 intmin2 3911 univ 4523 iunxpconst 4735 dmres 4980 rnresi 5039 cnvcnv 5135 rnresv 5142 cnvsn0 5151 cnvsn 5165 resdmres 5174 coi2 5199 coires1 5200 dfdm2 5217 isarep2 5361 ssimaex 5640 fnreseql 5690 fmptpr 5776 idref 5825 mpompt 6037 caov31 6136 xpexgALT 6218 cnvoprab 6320 frec0g 6483 unfiin 7023 xpfi 7029 endjusym 7198 halfnqq 7523 caucvgprlemm 7781 caucvgprprlemmu 7808 caucvgsr 7915 mvlladdi 8290 8th4div3 9256 nneoor 9475 nummac 9548 numadd 9550 numaddc 9551 nummul1c 9552 decbin0 9643 infrenegsupex 9715 xnn0nnen 10582 iseqvalcbv 10604 m1expcl2 10706 facnn 10872 fac0 10873 4bc3eq4 10918 fihasheq0 10938 resqrexlemcalc1 11325 sqrt1 11357 sqrt4 11358 sqrt9 11359 infxrnegsupex 11574 isumss2 11704 geo2sum2 11826 geoihalfsum 11833 sin0 12040 efival 12043 ef01bndlem 12067 cos2bnd 12071 sin4lt0 12078 flodddiv4 12247 2prm 12449 dec5dvds 12735 modxai 12739 mod2xi 12740 gcdi 12743 numexp2x 12748 decsplit 12752 znnen 12769 ennnfonelemhf1o 12784 setsslid 12883 ressressg 12907 metreslem 14852 retopbas 14995 cnfldms 15008 sinhalfpilem 15263 sincos6thpi 15314 sincos3rdpi 15315 lgsdir2lem3 15507 lgseisenlem1 15547 lgseisenlem2 15548 lgsquadlem1 15554 lgsquadlem2 15555 2lgsoddprmlem2 15583 |
| Copyright terms: Public domain | W3C validator |