| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
| Ref | Expression |
|---|---|
| eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr3i | ⊢ 𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2208 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqtr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtri 2225 | 1 ⊢ 𝐵 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: 3eqtr3i 2233 3eqtr3ri 2234 unundi 3333 unundir 3334 inindi 3389 inindir 3390 difun1 3432 difabs 3436 notab 3442 dfrab2 3447 dif0 3530 difdifdirss 3544 tpidm13 3732 intmin2 3910 univ 4522 iunxpconst 4734 dmres 4979 rnresi 5038 cnvcnv 5134 rnresv 5141 cnvsn0 5150 cnvsn 5164 resdmres 5173 coi2 5198 coires1 5199 dfdm2 5216 isarep2 5360 ssimaex 5639 fnreseql 5689 fmptpr 5775 idref 5824 mpompt 6036 caov31 6135 xpexgALT 6217 cnvoprab 6319 frec0g 6482 unfiin 7022 xpfi 7028 endjusym 7197 halfnqq 7522 caucvgprlemm 7780 caucvgprprlemmu 7807 caucvgsr 7914 mvlladdi 8289 8th4div3 9255 nneoor 9474 nummac 9547 numadd 9549 numaddc 9550 nummul1c 9551 decbin0 9642 infrenegsupex 9714 xnn0nnen 10580 iseqvalcbv 10602 m1expcl2 10704 facnn 10870 fac0 10871 4bc3eq4 10916 fihasheq0 10936 resqrexlemcalc1 11296 sqrt1 11328 sqrt4 11329 sqrt9 11330 infxrnegsupex 11545 isumss2 11675 geo2sum2 11797 geoihalfsum 11804 sin0 12011 efival 12014 ef01bndlem 12038 cos2bnd 12042 sin4lt0 12049 flodddiv4 12218 2prm 12420 dec5dvds 12706 modxai 12710 mod2xi 12711 gcdi 12714 numexp2x 12719 decsplit 12723 znnen 12740 ennnfonelemhf1o 12755 setsslid 12854 ressressg 12878 metreslem 14823 retopbas 14966 cnfldms 14979 sinhalfpilem 15234 sincos6thpi 15285 sincos3rdpi 15286 lgsdir2lem3 15478 lgseisenlem1 15518 lgseisenlem2 15519 lgsquadlem1 15525 lgsquadlem2 15526 2lgsoddprmlem2 15554 |
| Copyright terms: Public domain | W3C validator |