![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
Ref | Expression |
---|---|
eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
Ref | Expression |
---|---|
eqtr3i | ⊢ 𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2181 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqtr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
4 | 2, 3 | eqtri 2198 | 1 ⊢ 𝐵 = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: 3eqtr3i 2206 3eqtr3ri 2207 unundi 3298 unundir 3299 inindi 3354 inindir 3355 difun1 3397 difabs 3401 notab 3407 dfrab2 3412 dif0 3495 difdifdirss 3509 tpidm13 3694 intmin2 3872 univ 4478 iunxpconst 4688 dmres 4930 opabresid 4962 rnresi 4987 cnvcnv 5083 rnresv 5090 cnvsn0 5099 cnvsn 5113 resdmres 5122 coi2 5147 coires1 5148 dfdm2 5165 isarep2 5305 ssimaex 5580 fnreseql 5629 fmptpr 5711 idref 5760 mpompt 5970 caov31 6067 xpexgALT 6137 cnvoprab 6238 frec0g 6401 unfiin 6928 xpfi 6932 endjusym 7098 halfnqq 7412 caucvgprlemm 7670 caucvgprprlemmu 7697 caucvgsr 7804 mvlladdi 8178 8th4div3 9141 nneoor 9358 nummac 9431 numadd 9433 numaddc 9434 nummul1c 9435 decbin0 9526 infrenegsupex 9597 iseqvalcbv 10460 m1expcl2 10545 facnn 10710 fac0 10711 4bc3eq4 10756 fihasheq0 10776 resqrexlemcalc1 11026 sqrt1 11058 sqrt4 11059 sqrt9 11060 infxrnegsupex 11274 isumss2 11404 geo2sum2 11526 geoihalfsum 11533 sin0 11740 efival 11743 ef01bndlem 11767 cos2bnd 11771 sin4lt0 11777 flodddiv4 11942 2prm 12130 znnen 12402 ennnfonelemhf1o 12417 setsslid 12516 ressressg 12537 metreslem 14020 retopbas 14163 sinhalfpilem 14352 sincos6thpi 14403 sincos3rdpi 14404 lgsdir2lem3 14571 lgseisenlem1 14590 lgseisenlem2 14591 2lgsoddprmlem2 14594 |
Copyright terms: Public domain | W3C validator |