| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
| Ref | Expression |
|---|---|
| eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr3i | ⊢ 𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqtr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtri 2217 | 1 ⊢ 𝐵 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: 3eqtr3i 2225 3eqtr3ri 2226 unundi 3325 unundir 3326 inindi 3381 inindir 3382 difun1 3424 difabs 3428 notab 3434 dfrab2 3439 dif0 3522 difdifdirss 3536 tpidm13 3723 intmin2 3901 univ 4512 iunxpconst 4724 dmres 4968 rnresi 5027 cnvcnv 5123 rnresv 5130 cnvsn0 5139 cnvsn 5153 resdmres 5162 coi2 5187 coires1 5188 dfdm2 5205 isarep2 5346 ssimaex 5625 fnreseql 5675 fmptpr 5757 idref 5806 mpompt 6018 caov31 6117 xpexgALT 6199 cnvoprab 6301 frec0g 6464 unfiin 6996 xpfi 7002 endjusym 7171 halfnqq 7494 caucvgprlemm 7752 caucvgprprlemmu 7779 caucvgsr 7886 mvlladdi 8261 8th4div3 9227 nneoor 9445 nummac 9518 numadd 9520 numaddc 9521 nummul1c 9522 decbin0 9613 infrenegsupex 9685 xnn0nnen 10546 iseqvalcbv 10568 m1expcl2 10670 facnn 10836 fac0 10837 4bc3eq4 10882 fihasheq0 10902 resqrexlemcalc1 11196 sqrt1 11228 sqrt4 11229 sqrt9 11230 infxrnegsupex 11445 isumss2 11575 geo2sum2 11697 geoihalfsum 11704 sin0 11911 efival 11914 ef01bndlem 11938 cos2bnd 11942 sin4lt0 11949 flodddiv4 12118 2prm 12320 dec5dvds 12606 modxai 12610 mod2xi 12611 gcdi 12614 numexp2x 12619 decsplit 12623 znnen 12640 ennnfonelemhf1o 12655 setsslid 12754 ressressg 12778 metreslem 14700 retopbas 14843 cnfldms 14856 sinhalfpilem 15111 sincos6thpi 15162 sincos3rdpi 15163 lgsdir2lem3 15355 lgseisenlem1 15395 lgseisenlem2 15396 lgsquadlem1 15402 lgsquadlem2 15403 2lgsoddprmlem2 15431 |
| Copyright terms: Public domain | W3C validator |