| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
| Ref | Expression |
|---|---|
| eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr3i | ⊢ 𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqtr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtri 2217 | 1 ⊢ 𝐵 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: 3eqtr3i 2225 3eqtr3ri 2226 unundi 3325 unundir 3326 inindi 3381 inindir 3382 difun1 3424 difabs 3428 notab 3434 dfrab2 3439 dif0 3522 difdifdirss 3536 tpidm13 3723 intmin2 3901 univ 4512 iunxpconst 4724 dmres 4968 rnresi 5027 cnvcnv 5123 rnresv 5130 cnvsn0 5139 cnvsn 5153 resdmres 5162 coi2 5187 coires1 5188 dfdm2 5205 isarep2 5346 ssimaex 5625 fnreseql 5675 fmptpr 5757 idref 5806 mpompt 6018 caov31 6117 xpexgALT 6199 cnvoprab 6301 frec0g 6464 unfiin 6996 xpfi 7002 endjusym 7171 halfnqq 7496 caucvgprlemm 7754 caucvgprprlemmu 7781 caucvgsr 7888 mvlladdi 8263 8th4div3 9229 nneoor 9447 nummac 9520 numadd 9522 numaddc 9523 nummul1c 9524 decbin0 9615 infrenegsupex 9687 xnn0nnen 10548 iseqvalcbv 10570 m1expcl2 10672 facnn 10838 fac0 10839 4bc3eq4 10884 fihasheq0 10904 resqrexlemcalc1 11198 sqrt1 11230 sqrt4 11231 sqrt9 11232 infxrnegsupex 11447 isumss2 11577 geo2sum2 11699 geoihalfsum 11706 sin0 11913 efival 11916 ef01bndlem 11940 cos2bnd 11944 sin4lt0 11951 flodddiv4 12120 2prm 12322 dec5dvds 12608 modxai 12612 mod2xi 12613 gcdi 12616 numexp2x 12621 decsplit 12625 znnen 12642 ennnfonelemhf1o 12657 setsslid 12756 ressressg 12780 metreslem 14724 retopbas 14867 cnfldms 14880 sinhalfpilem 15135 sincos6thpi 15186 sincos3rdpi 15187 lgsdir2lem3 15379 lgseisenlem1 15419 lgseisenlem2 15420 lgsquadlem1 15426 lgsquadlem2 15427 2lgsoddprmlem2 15455 |
| Copyright terms: Public domain | W3C validator |