| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 6-May-1994.) |
| Ref | Expression |
|---|---|
| eqtr3i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr3i.2 | ⊢ 𝐴 = 𝐶 |
| Ref | Expression |
|---|---|
| eqtr3i | ⊢ 𝐵 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eqcomi 2233 | . 2 ⊢ 𝐵 = 𝐴 |
| 3 | eqtr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
| 4 | 2, 3 | eqtri 2250 | 1 ⊢ 𝐵 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: 3eqtr3i 2258 3eqtr3ri 2259 unundi 3365 unundir 3366 inindi 3421 inindir 3422 difun1 3464 difabs 3468 notab 3474 dfrab2 3479 dif0 3562 difdifdirss 3576 tpidm13 3766 intmin2 3948 univ 4566 iunxpconst 4778 dmres 5025 rnresi 5084 cnvcnv 5180 rnresv 5187 cnvsn0 5196 cnvsn 5210 resdmres 5219 coi2 5244 coires1 5245 dfdm2 5262 isarep2 5407 ssimaex 5694 fnreseql 5744 fmptpr 5830 idref 5879 mpompt 6095 caov31 6194 xpexgALT 6276 cnvoprab 6378 frec0g 6541 unfiin 7084 xpfi 7090 endjusym 7259 halfnqq 7593 caucvgprlemm 7851 caucvgprprlemmu 7878 caucvgsr 7985 mvlladdi 8360 8th4div3 9326 nneoor 9545 nummac 9618 numadd 9620 numaddc 9621 nummul1c 9622 decbin0 9713 infrenegsupex 9785 xnn0nnen 10654 iseqvalcbv 10676 m1expcl2 10778 facnn 10944 fac0 10945 4bc3eq4 10990 fihasheq0 11010 resqrexlemcalc1 11520 sqrt1 11552 sqrt4 11553 sqrt9 11554 infxrnegsupex 11769 isumss2 11899 geo2sum2 12021 geoihalfsum 12028 sin0 12235 efival 12238 ef01bndlem 12262 cos2bnd 12266 sin4lt0 12273 flodddiv4 12442 2prm 12644 dec5dvds 12930 modxai 12934 mod2xi 12935 gcdi 12938 numexp2x 12943 decsplit 12947 znnen 12964 ennnfonelemhf1o 12979 setsslid 13078 ressressg 13103 metreslem 15048 retopbas 15191 cnfldms 15204 sinhalfpilem 15459 sincos6thpi 15510 sincos3rdpi 15511 lgsdir2lem3 15703 lgseisenlem1 15743 lgseisenlem2 15744 lgsquadlem1 15750 lgsquadlem2 15751 2lgsoddprmlem2 15779 |
| Copyright terms: Public domain | W3C validator |