ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidm GIF version

Theorem unidm 3315
Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
unidm (𝐴𝐴) = 𝐴

Proof of Theorem unidm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oridm 758 . 2 ((𝑥𝐴𝑥𝐴) ↔ 𝑥𝐴)
21uneqri 3314 1 (𝐴𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wcel 2175  cun 3163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169
This theorem is referenced by:  unundi  3333  unundir  3334  uneqin  3423  difabs  3436  ifidss  3585  dfsn2  3646  diftpsn3  3773  unisn  3865  dfdm2  5216  fun2  5448  resasplitss  5454  xpider  6692  pm54.43  7297  plyun0  15150
  Copyright terms: Public domain W3C validator