![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unidm | GIF version |
Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oridm 715 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | uneqri 3165 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1299 ∈ wcel 1448 ∪ cun 3019 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-un 3025 |
This theorem is referenced by: unundi 3184 unundir 3185 uneqin 3274 difabs 3287 dfsn2 3488 diftpsn3 3608 unisn 3699 dfdm2 5009 fun2 5232 resasplitss 5238 xpider 6430 pm54.43 6957 |
Copyright terms: Public domain | W3C validator |