| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unidm | GIF version | ||
| Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oridm 758 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | uneqri 3305 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∪ cun 3155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 |
| This theorem is referenced by: unundi 3324 unundir 3325 uneqin 3414 difabs 3427 ifidss 3576 dfsn2 3636 diftpsn3 3763 unisn 3855 dfdm2 5204 fun2 5431 resasplitss 5437 xpider 6665 pm54.43 7257 plyun0 14972 |
| Copyright terms: Public domain | W3C validator |