![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unidm | GIF version |
Description: Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
unidm | ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oridm 758 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | uneqri 3301 | 1 ⊢ (𝐴 ∪ 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ∪ cun 3151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 |
This theorem is referenced by: unundi 3320 unundir 3321 uneqin 3410 difabs 3423 ifidss 3572 dfsn2 3632 diftpsn3 3759 unisn 3851 dfdm2 5200 fun2 5427 resasplitss 5433 xpider 6660 pm54.43 7250 plyun0 14882 |
Copyright terms: Public domain | W3C validator |