| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq1i | GIF version | ||
| Description: Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| uneq1i | ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq1 3324 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 |
| This theorem is referenced by: un12 3335 unundi 3338 tpcoma 3732 qdass 3735 qdassr 3736 tpidm12 3737 resasplitss 5467 fmptpr 5789 df2o3 6529 undifdc 7036 sbthlemi6 7079 exmidfodomrlemim 7325 znnen 12844 setscom 12947 |
| Copyright terms: Public domain | W3C validator |