ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfiin GIF version

Theorem unfiin 7038
Description: The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.)
Assertion
Ref Expression
unfiin ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ Fin)

Proof of Theorem unfiin
StepHypRef Expression
1 simpll 527 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → 𝐴 ∈ Fin)
2 simpr 110 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ Fin)
3 inss1 3397 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
43a1i 9 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ⊆ 𝐴)
5 undiffi 7037 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐴) → 𝐴 = ((𝐴𝐵) ∪ (𝐴 ∖ (𝐴𝐵))))
61, 2, 4, 5syl3anc 1250 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → 𝐴 = ((𝐴𝐵) ∪ (𝐴 ∖ (𝐴𝐵))))
7 simplr 528 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → 𝐵 ∈ Fin)
8 inss2 3398 . . . . . . 7 (𝐴𝐵) ⊆ 𝐵
98a1i 9 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ⊆ 𝐵)
10 undiffi 7037 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐵) → 𝐵 = ((𝐴𝐵) ∪ (𝐵 ∖ (𝐴𝐵))))
117, 2, 9, 10syl3anc 1250 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → 𝐵 = ((𝐴𝐵) ∪ (𝐵 ∖ (𝐴𝐵))))
126, 11uneq12d 3332 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) = (((𝐴𝐵) ∪ (𝐴 ∖ (𝐴𝐵))) ∪ ((𝐴𝐵) ∪ (𝐵 ∖ (𝐴𝐵)))))
13 unundi 3338 . . . 4 ((𝐴𝐵) ∪ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))) = (((𝐴𝐵) ∪ (𝐴 ∖ (𝐴𝐵))) ∪ ((𝐴𝐵) ∪ (𝐵 ∖ (𝐴𝐵))))
1412, 13eqtr4di 2257 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) = ((𝐴𝐵) ∪ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))))
15 diffifi 7006 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴 ∖ (𝐴𝐵)) ∈ Fin)
161, 2, 4, 15syl3anc 1250 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴 ∖ (𝐴𝐵)) ∈ Fin)
17 diffifi 7006 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐵) → (𝐵 ∖ (𝐴𝐵)) ∈ Fin)
187, 2, 9, 17syl3anc 1250 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐵 ∖ (𝐴𝐵)) ∈ Fin)
19 incom 3369 . . . . . . . . . 10 (𝐵𝐴) = (𝐴𝐵)
2019difeq2i 3292 . . . . . . . . 9 (𝐵 ∖ (𝐵𝐴)) = (𝐵 ∖ (𝐴𝐵))
21 difin 3414 . . . . . . . . 9 (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴)
2220, 21eqtr3i 2229 . . . . . . . 8 (𝐵 ∖ (𝐴𝐵)) = (𝐵𝐴)
2322ineq2i 3375 . . . . . . 7 ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵 ∖ (𝐴𝐵))) = ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵𝐴))
24 difss 3303 . . . . . . . 8 (𝐴 ∖ (𝐴𝐵)) ⊆ 𝐴
25 disjdif 3537 . . . . . . . 8 (𝐴 ∩ (𝐵𝐴)) = ∅
26 ssdisj 3521 . . . . . . . 8 (((𝐴 ∖ (𝐴𝐵)) ⊆ 𝐴 ∧ (𝐴 ∩ (𝐵𝐴)) = ∅) → ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵𝐴)) = ∅)
2724, 25, 26mp2an 426 . . . . . . 7 ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵𝐴)) = ∅
2823, 27eqtri 2227 . . . . . 6 ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵 ∖ (𝐴𝐵))) = ∅
2928a1i 9 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵 ∖ (𝐴𝐵))) = ∅)
30 unfidisj 7034 . . . . 5 (((𝐴 ∖ (𝐴𝐵)) ∈ Fin ∧ (𝐵 ∖ (𝐴𝐵)) ∈ Fin ∧ ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵 ∖ (𝐴𝐵))) = ∅) → ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵))) ∈ Fin)
3116, 18, 29, 30syl3anc 1250 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵))) ∈ Fin)
32 difundir 3430 . . . . . . 7 ((𝐴𝐵) ∖ (𝐴𝐵)) = ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))
3332ineq2i 3375 . . . . . 6 ((𝐴𝐵) ∩ ((𝐴𝐵) ∖ (𝐴𝐵))) = ((𝐴𝐵) ∩ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵))))
34 disjdif 3537 . . . . . 6 ((𝐴𝐵) ∩ ((𝐴𝐵) ∖ (𝐴𝐵))) = ∅
3533, 34eqtr3i 2229 . . . . 5 ((𝐴𝐵) ∩ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))) = ∅
3635a1i 9 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → ((𝐴𝐵) ∩ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))) = ∅)
37 unfidisj 7034 . . . 4 (((𝐴𝐵) ∈ Fin ∧ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵))) ∈ Fin ∧ ((𝐴𝐵) ∩ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))) = ∅) → ((𝐴𝐵) ∪ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))) ∈ Fin)
382, 31, 36, 37syl3anc 1250 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → ((𝐴𝐵) ∪ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))) ∈ Fin)
3914, 38eqeltrd 2283 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ Fin)
40393impa 1197 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  cdif 3167  cun 3168  cin 3169  wss 3170  c0 3464  Fincfn 6840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-1o 6515  df-er 6633  df-en 6841  df-fin 6843
This theorem is referenced by:  4sqlem11  12799
  Copyright terms: Public domain W3C validator