ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfiin GIF version

Theorem unfiin 7084
Description: The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.)
Assertion
Ref Expression
unfiin ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ Fin)

Proof of Theorem unfiin
StepHypRef Expression
1 simpll 527 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → 𝐴 ∈ Fin)
2 simpr 110 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ Fin)
3 inss1 3424 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
43a1i 9 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ⊆ 𝐴)
5 undiffi 7083 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐴) → 𝐴 = ((𝐴𝐵) ∪ (𝐴 ∖ (𝐴𝐵))))
61, 2, 4, 5syl3anc 1271 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → 𝐴 = ((𝐴𝐵) ∪ (𝐴 ∖ (𝐴𝐵))))
7 simplr 528 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → 𝐵 ∈ Fin)
8 inss2 3425 . . . . . . 7 (𝐴𝐵) ⊆ 𝐵
98a1i 9 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ⊆ 𝐵)
10 undiffi 7083 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐵) → 𝐵 = ((𝐴𝐵) ∪ (𝐵 ∖ (𝐴𝐵))))
117, 2, 9, 10syl3anc 1271 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → 𝐵 = ((𝐴𝐵) ∪ (𝐵 ∖ (𝐴𝐵))))
126, 11uneq12d 3359 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) = (((𝐴𝐵) ∪ (𝐴 ∖ (𝐴𝐵))) ∪ ((𝐴𝐵) ∪ (𝐵 ∖ (𝐴𝐵)))))
13 unundi 3365 . . . 4 ((𝐴𝐵) ∪ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))) = (((𝐴𝐵) ∪ (𝐴 ∖ (𝐴𝐵))) ∪ ((𝐴𝐵) ∪ (𝐵 ∖ (𝐴𝐵))))
1412, 13eqtr4di 2280 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) = ((𝐴𝐵) ∪ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))))
15 diffifi 7052 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴 ∖ (𝐴𝐵)) ∈ Fin)
161, 2, 4, 15syl3anc 1271 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴 ∖ (𝐴𝐵)) ∈ Fin)
17 diffifi 7052 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐵) → (𝐵 ∖ (𝐴𝐵)) ∈ Fin)
187, 2, 9, 17syl3anc 1271 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐵 ∖ (𝐴𝐵)) ∈ Fin)
19 incom 3396 . . . . . . . . . 10 (𝐵𝐴) = (𝐴𝐵)
2019difeq2i 3319 . . . . . . . . 9 (𝐵 ∖ (𝐵𝐴)) = (𝐵 ∖ (𝐴𝐵))
21 difin 3441 . . . . . . . . 9 (𝐵 ∖ (𝐵𝐴)) = (𝐵𝐴)
2220, 21eqtr3i 2252 . . . . . . . 8 (𝐵 ∖ (𝐴𝐵)) = (𝐵𝐴)
2322ineq2i 3402 . . . . . . 7 ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵 ∖ (𝐴𝐵))) = ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵𝐴))
24 difss 3330 . . . . . . . 8 (𝐴 ∖ (𝐴𝐵)) ⊆ 𝐴
25 disjdif 3564 . . . . . . . 8 (𝐴 ∩ (𝐵𝐴)) = ∅
26 ssdisj 3548 . . . . . . . 8 (((𝐴 ∖ (𝐴𝐵)) ⊆ 𝐴 ∧ (𝐴 ∩ (𝐵𝐴)) = ∅) → ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵𝐴)) = ∅)
2724, 25, 26mp2an 426 . . . . . . 7 ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵𝐴)) = ∅
2823, 27eqtri 2250 . . . . . 6 ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵 ∖ (𝐴𝐵))) = ∅
2928a1i 9 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵 ∖ (𝐴𝐵))) = ∅)
30 unfidisj 7080 . . . . 5 (((𝐴 ∖ (𝐴𝐵)) ∈ Fin ∧ (𝐵 ∖ (𝐴𝐵)) ∈ Fin ∧ ((𝐴 ∖ (𝐴𝐵)) ∩ (𝐵 ∖ (𝐴𝐵))) = ∅) → ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵))) ∈ Fin)
3116, 18, 29, 30syl3anc 1271 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵))) ∈ Fin)
32 difundir 3457 . . . . . . 7 ((𝐴𝐵) ∖ (𝐴𝐵)) = ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))
3332ineq2i 3402 . . . . . 6 ((𝐴𝐵) ∩ ((𝐴𝐵) ∖ (𝐴𝐵))) = ((𝐴𝐵) ∩ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵))))
34 disjdif 3564 . . . . . 6 ((𝐴𝐵) ∩ ((𝐴𝐵) ∖ (𝐴𝐵))) = ∅
3533, 34eqtr3i 2252 . . . . 5 ((𝐴𝐵) ∩ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))) = ∅
3635a1i 9 . . . 4 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → ((𝐴𝐵) ∩ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))) = ∅)
37 unfidisj 7080 . . . 4 (((𝐴𝐵) ∈ Fin ∧ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵))) ∈ Fin ∧ ((𝐴𝐵) ∩ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))) = ∅) → ((𝐴𝐵) ∪ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))) ∈ Fin)
382, 31, 36, 37syl3anc 1271 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → ((𝐴𝐵) ∪ ((𝐴 ∖ (𝐴𝐵)) ∪ (𝐵 ∖ (𝐴𝐵)))) ∈ Fin)
3914, 38eqeltrd 2306 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ Fin)
40393impa 1218 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → (𝐴𝐵) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  cdif 3194  cun 3195  cin 3196  wss 3197  c0 3491  Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888
This theorem is referenced by:  4sqlem11  12919
  Copyright terms: Public domain W3C validator