Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpeq1 | GIF version |
Description: Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
xpeq1 | ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 461 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) |
3 | 2 | opabbidv 4048 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)}) |
4 | df-xp 4610 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
5 | df-xp 4610 | . 2 ⊢ (𝐵 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} | |
6 | 3, 4, 5 | 3eqtr4g 2224 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 {copab 4042 × cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-opab 4044 df-xp 4610 |
This theorem is referenced by: xpeq12 4623 xpeq1i 4624 xpeq1d 4627 opthprc 4655 reseq2 4879 xpeq0r 5026 xpdisj1 5028 xpima1 5050 pmvalg 6625 xpsneng 6788 xpcomeng 6794 xpdom2g 6798 xpfi 6895 exmidomni 7106 exmidfodomrlemim 7157 hashxp 10739 txuni2 12896 txbas 12898 txopn 12905 txrest 12916 txdis 12917 txdis1cn 12918 xmettxlem 13149 xmettx 13150 |
Copyright terms: Public domain | W3C validator |