ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq1 GIF version

Theorem xpeq1 4688
Description: Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
xpeq1 (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))

Proof of Theorem xpeq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2268 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21anbi1d 465 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝑦𝐶) ↔ (𝑥𝐵𝑦𝐶)))
32opabbidv 4109 . 2 (𝐴 = 𝐵 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)})
4 df-xp 4680 . 2 (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}
5 df-xp 4680 . 2 (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}
63, 4, 53eqtr4g 2262 1 (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  {copab 4103   × cxp 4672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-opab 4105  df-xp 4680
This theorem is referenced by:  xpeq12  4693  xpeq1i  4694  xpeq1d  4697  opthprc  4725  reseq2  4953  xpeq0r  5104  xpdisj1  5106  xpima1  5128  pmvalg  6745  xpsneng  6916  xpcomeng  6922  xpdom2g  6926  xpfi  7028  exmidomni  7243  exmidfodomrlemim  7308  hashxp  10969  txuni2  14670  txbas  14672  txopn  14679  txrest  14690  txdis  14691  txdis1cn  14692  xmettxlem  14923  xmettx  14924  dvmptid  15130
  Copyright terms: Public domain W3C validator