ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq1 GIF version

Theorem xpeq1 4697
Description: Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
xpeq1 (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))

Proof of Theorem xpeq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2270 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21anbi1d 465 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝑦𝐶) ↔ (𝑥𝐵𝑦𝐶)))
32opabbidv 4118 . 2 (𝐴 = 𝐵 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)})
4 df-xp 4689 . 2 (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}
5 df-xp 4689 . 2 (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}
63, 4, 53eqtr4g 2264 1 (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {copab 4112   × cxp 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-opab 4114  df-xp 4689
This theorem is referenced by:  xpeq12  4702  xpeq1i  4703  xpeq1d  4706  opthprc  4734  reseq2  4963  xpeq0r  5114  xpdisj1  5116  xpima1  5138  pmvalg  6759  xpsneng  6932  xpcomeng  6938  xpdom2g  6942  xpfi  7044  exmidomni  7259  exmidfodomrlemim  7325  hashxp  10993  txuni2  14803  txbas  14805  txopn  14812  txrest  14823  txdis  14824  txdis1cn  14825  xmettxlem  15056  xmettx  15057  dvmptid  15263  incistruhgr  15761
  Copyright terms: Public domain W3C validator