ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq2d GIF version

Theorem xpeq2d 4567
Description: Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
Hypothesis
Ref Expression
xpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
xpeq2d (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵))

Proof of Theorem xpeq2d
StepHypRef Expression
1 xpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 xpeq2 4558 . 2 (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵))
31, 2syl 14 1 (𝜑 → (𝐶 × 𝐴) = (𝐶 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332   × cxp 4541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-11 1485  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-opab 3994  df-xp 4549
This theorem is referenced by:  csbresg  4826  fconstg  5323  fvdiagfn  6591  mapsncnv  6593  xpsneng  6720  exp3val  10322  reldvg  12847  dvfvalap  12849
  Copyright terms: Public domain W3C validator