| Step | Hyp | Ref
 | Expression | 
| 1 |   | xpeq1 4677 | 
. . . 4
⊢ (𝑥 = ∅ → (𝑥 × 𝐵) = (∅ × 𝐵)) | 
| 2 | 1 | fveq2d 5562 | 
. . 3
⊢ (𝑥 = ∅ →
(♯‘(𝑥 ×
𝐵)) =
(♯‘(∅ × 𝐵))) | 
| 3 |   | fveq2 5558 | 
. . . 4
⊢ (𝑥 = ∅ →
(♯‘𝑥) =
(♯‘∅)) | 
| 4 | 3 | oveq1d 5937 | 
. . 3
⊢ (𝑥 = ∅ →
((♯‘𝑥) ·
(♯‘𝐵)) =
((♯‘∅) · (♯‘𝐵))) | 
| 5 | 2, 4 | eqeq12d 2211 | 
. 2
⊢ (𝑥 = ∅ →
((♯‘(𝑥 ×
𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔
(♯‘(∅ × 𝐵)) = ((♯‘∅) ·
(♯‘𝐵)))) | 
| 6 |   | xpeq1 4677 | 
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 × 𝐵) = (𝑦 × 𝐵)) | 
| 7 | 6 | fveq2d 5562 | 
. . 3
⊢ (𝑥 = 𝑦 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝑦 × 𝐵))) | 
| 8 |   | fveq2 5558 | 
. . . 4
⊢ (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦)) | 
| 9 | 8 | oveq1d 5937 | 
. . 3
⊢ (𝑥 = 𝑦 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) | 
| 10 | 7, 9 | eqeq12d 2211 | 
. 2
⊢ (𝑥 = 𝑦 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)))) | 
| 11 |   | xpeq1 4677 | 
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 × 𝐵) = ((𝑦 ∪ {𝑧}) × 𝐵)) | 
| 12 | 11 | fveq2d 5562 | 
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘(𝑥 × 𝐵)) = (♯‘((𝑦 ∪ {𝑧}) × 𝐵))) | 
| 13 |   | fveq2 5558 | 
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧}))) | 
| 14 | 13 | oveq1d 5937 | 
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))) | 
| 15 | 12, 14 | eqeq12d 2211 | 
. 2
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))) | 
| 16 |   | xpeq1 4677 | 
. . . 4
⊢ (𝑥 = 𝐴 → (𝑥 × 𝐵) = (𝐴 × 𝐵)) | 
| 17 | 16 | fveq2d 5562 | 
. . 3
⊢ (𝑥 = 𝐴 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝐴 × 𝐵))) | 
| 18 |   | fveq2 5558 | 
. . . 4
⊢ (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴)) | 
| 19 | 18 | oveq1d 5937 | 
. . 3
⊢ (𝑥 = 𝐴 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) | 
| 20 | 17, 19 | eqeq12d 2211 | 
. 2
⊢ (𝑥 = 𝐴 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))) | 
| 21 |   | 0xp 4743 | 
. . . . 5
⊢ (∅
× 𝐵) =
∅ | 
| 22 | 21 | fveq2i 5561 | 
. . . 4
⊢
(♯‘(∅ × 𝐵)) =
(♯‘∅) | 
| 23 |   | hash0 10888 | 
. . . 4
⊢
(♯‘∅) = 0 | 
| 24 | 22, 23 | eqtri 2217 | 
. . 3
⊢
(♯‘(∅ × 𝐵)) = 0 | 
| 25 | 23 | oveq1i 5932 | 
. . . 4
⊢
((♯‘∅) · (♯‘𝐵)) = (0 · (♯‘𝐵)) | 
| 26 |   | hashcl 10873 | 
. . . . . . 7
⊢ (𝐵 ∈ Fin →
(♯‘𝐵) ∈
ℕ0) | 
| 27 | 26 | nn0cnd 9304 | 
. . . . . 6
⊢ (𝐵 ∈ Fin →
(♯‘𝐵) ∈
ℂ) | 
| 28 | 27 | mul02d 8418 | 
. . . . 5
⊢ (𝐵 ∈ Fin → (0 ·
(♯‘𝐵)) =
0) | 
| 29 | 28 | adantl 277 | 
. . . 4
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (0 ·
(♯‘𝐵)) =
0) | 
| 30 | 25, 29 | eqtrid 2241 | 
. . 3
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) →
((♯‘∅) · (♯‘𝐵)) = 0) | 
| 31 | 24, 30 | eqtr4id 2248 | 
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) →
(♯‘(∅ × 𝐵)) = ((♯‘∅) ·
(♯‘𝐵))) | 
| 32 |   | oveq1 5929 | 
. . . . 5
⊢
((♯‘(𝑦
× 𝐵)) =
((♯‘𝑦) ·
(♯‘𝐵)) →
((♯‘(𝑦 ×
𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵))) | 
| 33 | 32 | adantl 277 | 
. . . 4
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ Fin) ∧
𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵))) | 
| 34 |   | xpundir 4720 | 
. . . . . . 7
⊢ ((𝑦 ∪ {𝑧}) × 𝐵) = ((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵)) | 
| 35 | 34 | fveq2i 5561 | 
. . . . . 6
⊢
(♯‘((𝑦
∪ {𝑧}) × 𝐵)) = (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) | 
| 36 |   | simplr 528 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑦 ∈ Fin) | 
| 37 |   | simpllr 534 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝐵 ∈ Fin) | 
| 38 |   | xpfi 6993 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑦 × 𝐵) ∈ Fin) | 
| 39 | 36, 37, 38 | syl2anc 411 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝑦 × 𝐵) ∈ Fin) | 
| 40 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑧 ∈ V | 
| 41 |   | snfig 6873 | 
. . . . . . . . . . 11
⊢ (𝑧 ∈ V → {𝑧} ∈ Fin) | 
| 42 | 40, 41 | ax-mp 5 | 
. . . . . . . . . 10
⊢ {𝑧} ∈ Fin | 
| 43 |   | xpfi 6993 | 
. . . . . . . . . 10
⊢ (({𝑧} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑧} × 𝐵) ∈ Fin) | 
| 44 | 42, 43 | mpan 424 | 
. . . . . . . . 9
⊢ (𝐵 ∈ Fin → ({𝑧} × 𝐵) ∈ Fin) | 
| 45 | 44 | ad3antlr 493 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ({𝑧} × 𝐵) ∈ Fin) | 
| 46 |   | simprr 531 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) | 
| 47 | 46 | eldifbd 3169 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ¬ 𝑧 ∈ 𝑦) | 
| 48 |   | inxp 4800 | 
. . . . . . . . . 10
⊢ ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ((𝑦 ∩ {𝑧}) × (𝐵 ∩ 𝐵)) | 
| 49 |   | disjsn 3684 | 
. . . . . . . . . . . . 13
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) | 
| 50 | 49 | biimpri 133 | 
. . . . . . . . . . . 12
⊢ (¬
𝑧 ∈ 𝑦 → (𝑦 ∩ {𝑧}) = ∅) | 
| 51 | 50 | xpeq1d 4686 | 
. . . . . . . . . . 11
⊢ (¬
𝑧 ∈ 𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵 ∩ 𝐵)) = (∅ × (𝐵 ∩ 𝐵))) | 
| 52 |   | 0xp 4743 | 
. . . . . . . . . . 11
⊢ (∅
× (𝐵 ∩ 𝐵)) = ∅ | 
| 53 | 51, 52 | eqtrdi 2245 | 
. . . . . . . . . 10
⊢ (¬
𝑧 ∈ 𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵 ∩ 𝐵)) = ∅) | 
| 54 | 48, 53 | eqtrid 2241 | 
. . . . . . . . 9
⊢ (¬
𝑧 ∈ 𝑦 → ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅) | 
| 55 | 47, 54 | syl 14 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅) | 
| 56 |   | hashun 10897 | 
. . . . . . . 8
⊢ (((𝑦 × 𝐵) ∈ Fin ∧ ({𝑧} × 𝐵) ∈ Fin ∧ ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵)))) | 
| 57 | 39, 45, 55, 56 | syl3anc 1249 | 
. . . . . . 7
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵)))) | 
| 58 | 40 | snex 4218 | 
. . . . . . . . . . . 12
⊢ {𝑧} ∈ V | 
| 59 | 58 | a1i 9 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → {𝑧} ∈ V) | 
| 60 |   | xpcomeng 6887 | 
. . . . . . . . . . 11
⊢ (({𝑧} ∈ V ∧ 𝐵 ∈ Fin) → ({𝑧} × 𝐵) ≈ (𝐵 × {𝑧})) | 
| 61 | 59, 37, 60 | syl2anc 411 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ({𝑧} × 𝐵) ≈ (𝐵 × {𝑧})) | 
| 62 | 40 | a1i 9 | 
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ V) | 
| 63 |   | xpsneng 6881 | 
. . . . . . . . . . 11
⊢ ((𝐵 ∈ Fin ∧ 𝑧 ∈ V) → (𝐵 × {𝑧}) ≈ 𝐵) | 
| 64 | 37, 62, 63 | syl2anc 411 | 
. . . . . . . . . 10
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝐵 × {𝑧}) ≈ 𝐵) | 
| 65 |   | entr 6843 | 
. . . . . . . . . 10
⊢ ((({𝑧} × 𝐵) ≈ (𝐵 × {𝑧}) ∧ (𝐵 × {𝑧}) ≈ 𝐵) → ({𝑧} × 𝐵) ≈ 𝐵) | 
| 66 | 61, 64, 65 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ({𝑧} × 𝐵) ≈ 𝐵) | 
| 67 |   | hashen 10876 | 
. . . . . . . . . 10
⊢ ((({𝑧} × 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵)) | 
| 68 | 45, 37, 67 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵)) | 
| 69 | 66, 68 | mpbird 167 | 
. . . . . . . 8
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (♯‘({𝑧} × 𝐵)) = (♯‘𝐵)) | 
| 70 | 69 | oveq2d 5938 | 
. . . . . . 7
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵))) | 
| 71 | 57, 70 | eqtrd 2229 | 
. . . . . 6
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵))) | 
| 72 | 35, 71 | eqtrid 2241 | 
. . . . 5
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵))) | 
| 73 | 72 | adantr 276 | 
. . . 4
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ Fin) ∧
𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵))) | 
| 74 |   | hashunsng 10899 | 
. . . . . . . . 9
⊢ (𝑧 ∈ V → ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))) | 
| 75 | 40, 74 | ax-mp 5 | 
. . . . . . . 8
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)) | 
| 76 | 75 | oveq1d 5937 | 
. . . . . . 7
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) + 1) · (♯‘𝐵))) | 
| 77 | 36, 47, 76 | syl2anc 411 | 
. . . . . 6
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) + 1) · (♯‘𝐵))) | 
| 78 |   | hashcl 10873 | 
. . . . . . . . 9
⊢ (𝑦 ∈ Fin →
(♯‘𝑦) ∈
ℕ0) | 
| 79 | 78 | nn0cnd 9304 | 
. . . . . . . 8
⊢ (𝑦 ∈ Fin →
(♯‘𝑦) ∈
ℂ) | 
| 80 | 36, 79 | syl 14 | 
. . . . . . 7
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (♯‘𝑦) ∈ ℂ) | 
| 81 | 37, 27 | syl 14 | 
. . . . . . 7
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (♯‘𝐵) ∈ ℂ) | 
| 82 | 80, 81 | adddirp1d 8053 | 
. . . . . 6
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (((♯‘𝑦) + 1) ·
(♯‘𝐵)) =
(((♯‘𝑦)
· (♯‘𝐵))
+ (♯‘𝐵))) | 
| 83 | 77, 82 | eqtrd 2229 | 
. . . . 5
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵))) | 
| 84 | 83 | adantr 276 | 
. . . 4
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ Fin) ∧
𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵))) | 
| 85 | 33, 73, 84 | 3eqtr4d 2239 | 
. . 3
⊢
(((((𝐴 ∈ Fin
∧ 𝐵 ∈ Fin) ∧
𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))) | 
| 86 | 85 | ex 115 | 
. 2
⊢ ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))) | 
| 87 |   | simpl 109 | 
. 2
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) | 
| 88 | 5, 10, 15, 20, 31, 86, 87 | findcard2sd 6953 | 
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) →
(♯‘(𝐴 ×
𝐵)) = ((♯‘𝐴) · (♯‘𝐵))) |