ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashxp GIF version

Theorem hashxp 10123
Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
hashxp ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))

Proof of Theorem hashxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4424 . . . 4 (𝑥 = ∅ → (𝑥 × 𝐵) = (∅ × 𝐵))
21fveq2d 5266 . . 3 (𝑥 = ∅ → (♯‘(𝑥 × 𝐵)) = (♯‘(∅ × 𝐵)))
3 fveq2 5262 . . . 4 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
43oveq1d 5622 . . 3 (𝑥 = ∅ → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘∅) · (♯‘𝐵)))
52, 4eqeq12d 2099 . 2 (𝑥 = ∅ → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(∅ × 𝐵)) = ((♯‘∅) · (♯‘𝐵))))
6 xpeq1 4424 . . . 4 (𝑥 = 𝑦 → (𝑥 × 𝐵) = (𝑦 × 𝐵))
76fveq2d 5266 . . 3 (𝑥 = 𝑦 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝑦 × 𝐵)))
8 fveq2 5262 . . . 4 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
98oveq1d 5622 . . 3 (𝑥 = 𝑦 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝑦) · (♯‘𝐵)))
107, 9eqeq12d 2099 . 2 (𝑥 = 𝑦 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))))
11 xpeq1 4424 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 × 𝐵) = ((𝑦 ∪ {𝑧}) × 𝐵))
1211fveq2d 5266 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘(𝑥 × 𝐵)) = (♯‘((𝑦 ∪ {𝑧}) × 𝐵)))
13 fveq2 5262 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧})))
1413oveq1d 5622 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))
1512, 14eqeq12d 2099 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))))
16 xpeq1 4424 . . . 4 (𝑥 = 𝐴 → (𝑥 × 𝐵) = (𝐴 × 𝐵))
1716fveq2d 5266 . . 3 (𝑥 = 𝐴 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝐴 × 𝐵)))
18 fveq2 5262 . . . 4 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
1918oveq1d 5622 . . 3 (𝑥 = 𝐴 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
2017, 19eqeq12d 2099 . 2 (𝑥 = 𝐴 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))))
21 hash0 10094 . . . . 5 (♯‘∅) = 0
2221oveq1i 5617 . . . 4 ((♯‘∅) · (♯‘𝐵)) = (0 · (♯‘𝐵))
23 hashcl 10078 . . . . . . 7 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
2423nn0cnd 8654 . . . . . 6 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
2524mul02d 7807 . . . . 5 (𝐵 ∈ Fin → (0 · (♯‘𝐵)) = 0)
2625adantl 271 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (0 · (♯‘𝐵)) = 0)
2722, 26syl5eq 2129 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘∅) · (♯‘𝐵)) = 0)
28 0xp 4485 . . . . 5 (∅ × 𝐵) = ∅
2928fveq2i 5265 . . . 4 (♯‘(∅ × 𝐵)) = (♯‘∅)
3029, 21eqtri 2105 . . 3 (♯‘(∅ × 𝐵)) = 0
3127, 30syl6reqr 2136 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(∅ × 𝐵)) = ((♯‘∅) · (♯‘𝐵)))
32 oveq1 5614 . . . . 5 ((♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)) → ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
3332adantl 271 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
34 xpundir 4462 . . . . . . 7 ((𝑦 ∪ {𝑧}) × 𝐵) = ((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))
3534fveq2i 5265 . . . . . 6 (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵)))
36 simplr 497 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
37 simpllr 501 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝐵 ∈ Fin)
38 xpfi 6584 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)
3936, 37, 38syl2anc 403 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 × 𝐵) ∈ Fin)
40 vex 2618 . . . . . . . . . . 11 𝑧 ∈ V
41 snfig 6477 . . . . . . . . . . 11 (𝑧 ∈ V → {𝑧} ∈ Fin)
4240, 41ax-mp 7 . . . . . . . . . 10 {𝑧} ∈ Fin
43 xpfi 6584 . . . . . . . . . 10 (({𝑧} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑧} × 𝐵) ∈ Fin)
4442, 43mpan 415 . . . . . . . . 9 (𝐵 ∈ Fin → ({𝑧} × 𝐵) ∈ Fin)
4544ad3antlr 477 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ({𝑧} × 𝐵) ∈ Fin)
46 simprr 499 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
4746eldifbd 3000 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
48 inxp 4537 . . . . . . . . . 10 ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ((𝑦 ∩ {𝑧}) × (𝐵𝐵))
49 disjsn 3487 . . . . . . . . . . . . 13 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
5049biimpri 131 . . . . . . . . . . . 12 𝑧𝑦 → (𝑦 ∩ {𝑧}) = ∅)
5150xpeq1d 4433 . . . . . . . . . . 11 𝑧𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵𝐵)) = (∅ × (𝐵𝐵)))
52 0xp 4485 . . . . . . . . . . 11 (∅ × (𝐵𝐵)) = ∅
5351, 52syl6eq 2133 . . . . . . . . . 10 𝑧𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵𝐵)) = ∅)
5448, 53syl5eq 2129 . . . . . . . . 9 𝑧𝑦 → ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅)
5547, 54syl 14 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅)
56 hashun 10102 . . . . . . . 8 (((𝑦 × 𝐵) ∈ Fin ∧ ({𝑧} × 𝐵) ∈ Fin ∧ ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
5739, 45, 55, 56syl3anc 1172 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
5840snex 3993 . . . . . . . . . . . 12 {𝑧} ∈ V
5958a1i 9 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → {𝑧} ∈ V)
60 xpcomeng 6490 . . . . . . . . . . 11 (({𝑧} ∈ V ∧ 𝐵 ∈ Fin) → ({𝑧} × 𝐵) ≈ (𝐵 × {𝑧}))
6159, 37, 60syl2anc 403 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ({𝑧} × 𝐵) ≈ (𝐵 × {𝑧}))
6240a1i 9 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ V)
63 xpsneng 6484 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝑧 ∈ V) → (𝐵 × {𝑧}) ≈ 𝐵)
6437, 62, 63syl2anc 403 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝐵 × {𝑧}) ≈ 𝐵)
65 entr 6447 . . . . . . . . . 10 ((({𝑧} × 𝐵) ≈ (𝐵 × {𝑧}) ∧ (𝐵 × {𝑧}) ≈ 𝐵) → ({𝑧} × 𝐵) ≈ 𝐵)
6661, 64, 65syl2anc 403 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ({𝑧} × 𝐵) ≈ 𝐵)
67 hashen 10081 . . . . . . . . . 10 ((({𝑧} × 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵))
6845, 37, 67syl2anc 403 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵))
6966, 68mpbird 165 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘({𝑧} × 𝐵)) = (♯‘𝐵))
7069oveq2d 5623 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
7157, 70eqtrd 2117 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
7235, 71syl5eq 2129 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
7372adantr 270 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
74 hashunsng 10104 . . . . . . . . 9 (𝑧 ∈ V → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
7540, 74ax-mp 7 . . . . . . . 8 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
7675oveq1d 5622 . . . . . . 7 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) + 1) · (♯‘𝐵)))
7736, 47, 76syl2anc 403 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) + 1) · (♯‘𝐵)))
78 hashcl 10078 . . . . . . . . 9 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
7978nn0cnd 8654 . . . . . . . 8 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℂ)
8036, 79syl 14 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘𝑦) ∈ ℂ)
8137, 24syl 14 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘𝐵) ∈ ℂ)
8280, 81adddirp1d 7451 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8377, 82eqtrd 2117 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8483adantr 270 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8533, 73, 843eqtr4d 2127 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))
8685ex 113 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))))
87 simpl 107 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin)
885, 10, 15, 20, 31, 86, 87findcard2sd 6554 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436  Vcvv 2615  cdif 2985  cun 2986  cin 2987  wss 2988  c0 3275  {csn 3431   class class class wbr 3820   × cxp 4408  cfv 4978  (class class class)co 5607  cen 6401  Fincfn 6403  cc 7285  0cc0 7287  1c1 7288   + caddc 7290   · cmul 7292  chash 10072
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3928  ax-sep 3931  ax-nul 3939  ax-pow 3983  ax-pr 4009  ax-un 4233  ax-setind 4325  ax-iinf 4375  ax-cnex 7373  ax-resscn 7374  ax-1cn 7375  ax-1re 7376  ax-icn 7377  ax-addcl 7378  ax-addrcl 7379  ax-mulcl 7380  ax-addcom 7382  ax-mulcom 7383  ax-addass 7384  ax-mulass 7385  ax-distr 7386  ax-i2m1 7387  ax-0lt1 7388  ax-1rid 7389  ax-0id 7390  ax-rnegex 7391  ax-cnre 7393  ax-pre-ltirr 7394  ax-pre-ltwlin 7395  ax-pre-lttrn 7396  ax-pre-apti 7397  ax-pre-ltadd 7398
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3911  df-id 4093  df-iord 4166  df-on 4168  df-ilim 4169  df-suc 4171  df-iom 4378  df-xp 4416  df-rel 4417  df-cnv 4418  df-co 4419  df-dm 4420  df-rn 4421  df-res 4422  df-ima 4423  df-iota 4943  df-fun 4980  df-fn 4981  df-f 4982  df-f1 4983  df-fo 4984  df-f1o 4985  df-fv 4986  df-riota 5563  df-ov 5610  df-oprab 5611  df-mpt2 5612  df-1st 5862  df-2nd 5863  df-recs 6018  df-irdg 6083  df-frec 6104  df-1o 6129  df-oadd 6133  df-er 6238  df-en 6404  df-dom 6405  df-fin 6406  df-pnf 7461  df-mnf 7462  df-xr 7463  df-ltxr 7464  df-le 7465  df-sub 7592  df-neg 7593  df-inn 8351  df-n0 8600  df-z 8677  df-uz 8945  df-fz 9350  df-ihash 10073
This theorem is referenced by:  crth  11067  phimullem  11068
  Copyright terms: Public domain W3C validator