ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashxp GIF version

Theorem hashxp 10897
Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
hashxp ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))

Proof of Theorem hashxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4673 . . . 4 (𝑥 = ∅ → (𝑥 × 𝐵) = (∅ × 𝐵))
21fveq2d 5558 . . 3 (𝑥 = ∅ → (♯‘(𝑥 × 𝐵)) = (♯‘(∅ × 𝐵)))
3 fveq2 5554 . . . 4 (𝑥 = ∅ → (♯‘𝑥) = (♯‘∅))
43oveq1d 5933 . . 3 (𝑥 = ∅ → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘∅) · (♯‘𝐵)))
52, 4eqeq12d 2208 . 2 (𝑥 = ∅ → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(∅ × 𝐵)) = ((♯‘∅) · (♯‘𝐵))))
6 xpeq1 4673 . . . 4 (𝑥 = 𝑦 → (𝑥 × 𝐵) = (𝑦 × 𝐵))
76fveq2d 5558 . . 3 (𝑥 = 𝑦 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝑦 × 𝐵)))
8 fveq2 5554 . . . 4 (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦))
98oveq1d 5933 . . 3 (𝑥 = 𝑦 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝑦) · (♯‘𝐵)))
107, 9eqeq12d 2208 . 2 (𝑥 = 𝑦 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))))
11 xpeq1 4673 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 × 𝐵) = ((𝑦 ∪ {𝑧}) × 𝐵))
1211fveq2d 5558 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘(𝑥 × 𝐵)) = (♯‘((𝑦 ∪ {𝑧}) × 𝐵)))
13 fveq2 5554 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (♯‘𝑥) = (♯‘(𝑦 ∪ {𝑧})))
1413oveq1d 5933 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))
1512, 14eqeq12d 2208 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))))
16 xpeq1 4673 . . . 4 (𝑥 = 𝐴 → (𝑥 × 𝐵) = (𝐴 × 𝐵))
1716fveq2d 5558 . . 3 (𝑥 = 𝐴 → (♯‘(𝑥 × 𝐵)) = (♯‘(𝐴 × 𝐵)))
18 fveq2 5554 . . . 4 (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴))
1918oveq1d 5933 . . 3 (𝑥 = 𝐴 → ((♯‘𝑥) · (♯‘𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
2017, 19eqeq12d 2208 . 2 (𝑥 = 𝐴 → ((♯‘(𝑥 × 𝐵)) = ((♯‘𝑥) · (♯‘𝐵)) ↔ (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵))))
21 0xp 4739 . . . . 5 (∅ × 𝐵) = ∅
2221fveq2i 5557 . . . 4 (♯‘(∅ × 𝐵)) = (♯‘∅)
23 hash0 10867 . . . 4 (♯‘∅) = 0
2422, 23eqtri 2214 . . 3 (♯‘(∅ × 𝐵)) = 0
2523oveq1i 5928 . . . 4 ((♯‘∅) · (♯‘𝐵)) = (0 · (♯‘𝐵))
26 hashcl 10852 . . . . . . 7 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
2726nn0cnd 9295 . . . . . 6 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
2827mul02d 8411 . . . . 5 (𝐵 ∈ Fin → (0 · (♯‘𝐵)) = 0)
2928adantl 277 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (0 · (♯‘𝐵)) = 0)
3025, 29eqtrid 2238 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘∅) · (♯‘𝐵)) = 0)
3124, 30eqtr4id 2245 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(∅ × 𝐵)) = ((♯‘∅) · (♯‘𝐵)))
32 oveq1 5925 . . . . 5 ((♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)) → ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
3332adantl 277 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
34 xpundir 4716 . . . . . . 7 ((𝑦 ∪ {𝑧}) × 𝐵) = ((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))
3534fveq2i 5557 . . . . . 6 (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵)))
36 simplr 528 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
37 simpllr 534 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝐵 ∈ Fin)
38 xpfi 6986 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)
3936, 37, 38syl2anc 411 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 × 𝐵) ∈ Fin)
40 vex 2763 . . . . . . . . . . 11 𝑧 ∈ V
41 snfig 6868 . . . . . . . . . . 11 (𝑧 ∈ V → {𝑧} ∈ Fin)
4240, 41ax-mp 5 . . . . . . . . . 10 {𝑧} ∈ Fin
43 xpfi 6986 . . . . . . . . . 10 (({𝑧} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑧} × 𝐵) ∈ Fin)
4442, 43mpan 424 . . . . . . . . 9 (𝐵 ∈ Fin → ({𝑧} × 𝐵) ∈ Fin)
4544ad3antlr 493 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ({𝑧} × 𝐵) ∈ Fin)
46 simprr 531 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
4746eldifbd 3165 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
48 inxp 4796 . . . . . . . . . 10 ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ((𝑦 ∩ {𝑧}) × (𝐵𝐵))
49 disjsn 3680 . . . . . . . . . . . . 13 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
5049biimpri 133 . . . . . . . . . . . 12 𝑧𝑦 → (𝑦 ∩ {𝑧}) = ∅)
5150xpeq1d 4682 . . . . . . . . . . 11 𝑧𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵𝐵)) = (∅ × (𝐵𝐵)))
52 0xp 4739 . . . . . . . . . . 11 (∅ × (𝐵𝐵)) = ∅
5351, 52eqtrdi 2242 . . . . . . . . . 10 𝑧𝑦 → ((𝑦 ∩ {𝑧}) × (𝐵𝐵)) = ∅)
5448, 53eqtrid 2238 . . . . . . . . 9 𝑧𝑦 → ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅)
5547, 54syl 14 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅)
56 hashun 10876 . . . . . . . 8 (((𝑦 × 𝐵) ∈ Fin ∧ ({𝑧} × 𝐵) ∈ Fin ∧ ((𝑦 × 𝐵) ∩ ({𝑧} × 𝐵)) = ∅) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
5739, 45, 55, 56syl3anc 1249 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))))
5840snex 4214 . . . . . . . . . . . 12 {𝑧} ∈ V
5958a1i 9 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → {𝑧} ∈ V)
60 xpcomeng 6882 . . . . . . . . . . 11 (({𝑧} ∈ V ∧ 𝐵 ∈ Fin) → ({𝑧} × 𝐵) ≈ (𝐵 × {𝑧}))
6159, 37, 60syl2anc 411 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ({𝑧} × 𝐵) ≈ (𝐵 × {𝑧}))
6240a1i 9 . . . . . . . . . . 11 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ V)
63 xpsneng 6876 . . . . . . . . . . 11 ((𝐵 ∈ Fin ∧ 𝑧 ∈ V) → (𝐵 × {𝑧}) ≈ 𝐵)
6437, 62, 63syl2anc 411 . . . . . . . . . 10 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝐵 × {𝑧}) ≈ 𝐵)
65 entr 6838 . . . . . . . . . 10 ((({𝑧} × 𝐵) ≈ (𝐵 × {𝑧}) ∧ (𝐵 × {𝑧}) ≈ 𝐵) → ({𝑧} × 𝐵) ≈ 𝐵)
6661, 64, 65syl2anc 411 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ({𝑧} × 𝐵) ≈ 𝐵)
67 hashen 10855 . . . . . . . . . 10 ((({𝑧} × 𝐵) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵))
6845, 37, 67syl2anc 411 . . . . . . . . 9 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((♯‘({𝑧} × 𝐵)) = (♯‘𝐵) ↔ ({𝑧} × 𝐵) ≈ 𝐵))
6966, 68mpbird 167 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘({𝑧} × 𝐵)) = (♯‘𝐵))
7069oveq2d 5934 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((♯‘(𝑦 × 𝐵)) + (♯‘({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
7157, 70eqtrd 2226 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘((𝑦 × 𝐵) ∪ ({𝑧} × 𝐵))) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
7235, 71eqtrid 2238 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
7372adantr 276 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 × 𝐵)) + (♯‘𝐵)))
74 hashunsng 10878 . . . . . . . . 9 (𝑧 ∈ V → ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1)))
7540, 74ax-mp 5 . . . . . . . 8 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (♯‘(𝑦 ∪ {𝑧})) = ((♯‘𝑦) + 1))
7675oveq1d 5933 . . . . . . 7 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) + 1) · (♯‘𝐵)))
7736, 47, 76syl2anc 411 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) + 1) · (♯‘𝐵)))
78 hashcl 10852 . . . . . . . . 9 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℕ0)
7978nn0cnd 9295 . . . . . . . 8 (𝑦 ∈ Fin → (♯‘𝑦) ∈ ℂ)
8036, 79syl 14 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘𝑦) ∈ ℂ)
8137, 27syl 14 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (♯‘𝐵) ∈ ℂ)
8280, 81adddirp1d 8046 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (((♯‘𝑦) + 1) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8377, 82eqtrd 2226 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8483adantr 276 . . . 4 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)) = (((♯‘𝑦) · (♯‘𝐵)) + (♯‘𝐵)))
8533, 73, 843eqtr4d 2236 . . 3 (((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵))) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵)))
8685ex 115 . 2 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((♯‘(𝑦 × 𝐵)) = ((♯‘𝑦) · (♯‘𝐵)) → (♯‘((𝑦 ∪ {𝑧}) × 𝐵)) = ((♯‘(𝑦 ∪ {𝑧})) · (♯‘𝐵))))
87 simpl 109 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin)
885, 10, 15, 20, 31, 86, 87findcard2sd 6948 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 × 𝐵)) = ((♯‘𝐴) · (♯‘𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  cdif 3150  cun 3151  cin 3152  wss 3153  c0 3446  {csn 3618   class class class wbr 4029   × cxp 4657  cfv 5254  (class class class)co 5918  cen 6792  Fincfn 6794  cc 7870  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877  chash 10846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-ihash 10847
This theorem is referenced by:  crth  12362  phimullem  12363
  Copyright terms: Public domain W3C validator