Step | Hyp | Ref
| Expression |
1 | | ixpsnf1o.f |
. 2
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ({𝐼} × {𝑥})) |
2 | | snexg 4163 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → {𝐼} ∈ V) |
3 | | vex 2729 |
. . . . 5
⊢ 𝑥 ∈ V |
4 | 3 | snex 4164 |
. . . 4
⊢ {𝑥} ∈ V |
5 | | xpexg 4718 |
. . . 4
⊢ (({𝐼} ∈ V ∧ {𝑥} ∈ V) → ({𝐼} × {𝑥}) ∈ V) |
6 | 2, 4, 5 | sylancl 410 |
. . 3
⊢ (𝐼 ∈ 𝑉 → ({𝐼} × {𝑥}) ∈ V) |
7 | 6 | adantr 274 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ({𝐼} × {𝑥}) ∈ V) |
8 | | vex 2729 |
. . . . 5
⊢ 𝑎 ∈ V |
9 | 8 | rnex 4871 |
. . . 4
⊢ ran 𝑎 ∈ V |
10 | 9 | uniex 4415 |
. . 3
⊢ ∪ ran 𝑎 ∈ V |
11 | 10 | a1i 9 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 ∈ X𝑦 ∈ {𝐼}𝐴) → ∪ ran
𝑎 ∈
V) |
12 | | sneq 3587 |
. . . . . 6
⊢ (𝑏 = 𝐼 → {𝑏} = {𝐼}) |
13 | 12 | xpeq1d 4627 |
. . . . 5
⊢ (𝑏 = 𝐼 → ({𝑏} × {𝑥}) = ({𝐼} × {𝑥})) |
14 | 13 | eqeq2d 2177 |
. . . 4
⊢ (𝑏 = 𝐼 → (𝑎 = ({𝑏} × {𝑥}) ↔ 𝑎 = ({𝐼} × {𝑥}))) |
15 | 14 | anbi2d 460 |
. . 3
⊢ (𝑏 = 𝐼 → ((𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝑏} × {𝑥})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝐼} × {𝑥})))) |
16 | | elixpsn 6701 |
. . . . . 6
⊢ (𝑏 ∈ V → (𝑎 ∈ X𝑦 ∈
{𝑏}𝐴 ↔ ∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉})) |
17 | 16 | elv 2730 |
. . . . 5
⊢ (𝑎 ∈ X𝑦 ∈
{𝑏}𝐴 ↔ ∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉}) |
18 | 12 | ixpeq1d 6676 |
. . . . . 6
⊢ (𝑏 = 𝐼 → X𝑦 ∈ {𝑏}𝐴 = X𝑦 ∈ {𝐼}𝐴) |
19 | 18 | eleq2d 2236 |
. . . . 5
⊢ (𝑏 = 𝐼 → (𝑎 ∈ X𝑦 ∈ {𝑏}𝐴 ↔ 𝑎 ∈ X𝑦 ∈ {𝐼}𝐴)) |
20 | 17, 19 | bitr3id 193 |
. . . 4
⊢ (𝑏 = 𝐼 → (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ↔ 𝑎 ∈ X𝑦 ∈ {𝐼}𝐴)) |
21 | 20 | anbi1d 461 |
. . 3
⊢ (𝑏 = 𝐼 → ((∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎) ↔ (𝑎 ∈ X𝑦 ∈ {𝐼}𝐴 ∧ 𝑥 = ∪ ran 𝑎))) |
22 | | vex 2729 |
. . . . . . 7
⊢ 𝑏 ∈ V |
23 | 22, 3 | xpsn 5661 |
. . . . . 6
⊢ ({𝑏} × {𝑥}) = {〈𝑏, 𝑥〉} |
24 | 23 | eqeq2i 2176 |
. . . . 5
⊢ (𝑎 = ({𝑏} × {𝑥}) ↔ 𝑎 = {〈𝑏, 𝑥〉}) |
25 | 24 | anbi2i 453 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝑏} × {𝑥})) ↔ (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉})) |
26 | | eqid 2165 |
. . . . . . . . 9
⊢
{〈𝑏, 𝑥〉} = {〈𝑏, 𝑥〉} |
27 | | opeq2 3759 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑥 → 〈𝑏, 𝑐〉 = 〈𝑏, 𝑥〉) |
28 | 27 | sneqd 3589 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑥 → {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}) |
29 | 28 | rspceeqv 2848 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑥〉} = {〈𝑏, 𝑥〉}) → ∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉}) |
30 | 26, 29 | mpan2 422 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → ∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉}) |
31 | 22, 3 | op2nda 5088 |
. . . . . . . . 9
⊢ ∪ ran {〈𝑏, 𝑥〉} = 𝑥 |
32 | 31 | eqcomi 2169 |
. . . . . . . 8
⊢ 𝑥 = ∪
ran {〈𝑏, 𝑥〉} |
33 | 30, 32 | jctir 311 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → (∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran
{〈𝑏, 𝑥〉})) |
34 | | eqeq1 2172 |
. . . . . . . . 9
⊢ (𝑎 = {〈𝑏, 𝑥〉} → (𝑎 = {〈𝑏, 𝑐〉} ↔ {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉})) |
35 | 34 | rexbidv 2467 |
. . . . . . . 8
⊢ (𝑎 = {〈𝑏, 𝑥〉} → (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ↔ ∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉})) |
36 | | rneq 4831 |
. . . . . . . . . 10
⊢ (𝑎 = {〈𝑏, 𝑥〉} → ran 𝑎 = ran {〈𝑏, 𝑥〉}) |
37 | 36 | unieqd 3800 |
. . . . . . . . 9
⊢ (𝑎 = {〈𝑏, 𝑥〉} → ∪
ran 𝑎 = ∪ ran {〈𝑏, 𝑥〉}) |
38 | 37 | eqeq2d 2177 |
. . . . . . . 8
⊢ (𝑎 = {〈𝑏, 𝑥〉} → (𝑥 = ∪ ran 𝑎 ↔ 𝑥 = ∪ ran
{〈𝑏, 𝑥〉})) |
39 | 35, 38 | anbi12d 465 |
. . . . . . 7
⊢ (𝑎 = {〈𝑏, 𝑥〉} → ((∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎) ↔ (∃𝑐 ∈ 𝐴 {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran
{〈𝑏, 𝑥〉}))) |
40 | 33, 39 | syl5ibrcom 156 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → (𝑎 = {〈𝑏, 𝑥〉} → (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎))) |
41 | 40 | imp 123 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉}) → (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎)) |
42 | | vex 2729 |
. . . . . . . . . . 11
⊢ 𝑐 ∈ V |
43 | 22, 42 | op2nda 5088 |
. . . . . . . . . 10
⊢ ∪ ran {〈𝑏, 𝑐〉} = 𝑐 |
44 | 43 | eqeq2i 2176 |
. . . . . . . . 9
⊢ (𝑥 = ∪
ran {〈𝑏, 𝑐〉} ↔ 𝑥 = 𝑐) |
45 | | eqidd 2166 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝐴 → {〈𝑏, 𝑐〉} = {〈𝑏, 𝑐〉}) |
46 | 45 | ancli 321 |
. . . . . . . . . 10
⊢ (𝑐 ∈ 𝐴 → (𝑐 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑐〉})) |
47 | | eleq1w 2227 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑐 → (𝑥 ∈ 𝐴 ↔ 𝑐 ∈ 𝐴)) |
48 | | opeq2 3759 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑐 → 〈𝑏, 𝑥〉 = 〈𝑏, 𝑐〉) |
49 | 48 | sneqd 3589 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑐 → {〈𝑏, 𝑥〉} = {〈𝑏, 𝑐〉}) |
50 | 49 | eqeq2d 2177 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑐 → ({〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉} ↔ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑐〉})) |
51 | 47, 50 | anbi12d 465 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑐 → ((𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}) ↔ (𝑐 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑐〉}))) |
52 | 46, 51 | syl5ibrcom 156 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝐴 → (𝑥 = 𝑐 → (𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}))) |
53 | 44, 52 | syl5bi 151 |
. . . . . . . 8
⊢ (𝑐 ∈ 𝐴 → (𝑥 = ∪ ran
{〈𝑏, 𝑐〉} → (𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}))) |
54 | | rneq 4831 |
. . . . . . . . . . 11
⊢ (𝑎 = {〈𝑏, 𝑐〉} → ran 𝑎 = ran {〈𝑏, 𝑐〉}) |
55 | 54 | unieqd 3800 |
. . . . . . . . . 10
⊢ (𝑎 = {〈𝑏, 𝑐〉} → ∪
ran 𝑎 = ∪ ran {〈𝑏, 𝑐〉}) |
56 | 55 | eqeq2d 2177 |
. . . . . . . . 9
⊢ (𝑎 = {〈𝑏, 𝑐〉} → (𝑥 = ∪ ran 𝑎 ↔ 𝑥 = ∪ ran
{〈𝑏, 𝑐〉})) |
57 | | eqeq1 2172 |
. . . . . . . . . 10
⊢ (𝑎 = {〈𝑏, 𝑐〉} → (𝑎 = {〈𝑏, 𝑥〉} ↔ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉})) |
58 | 57 | anbi2d 460 |
. . . . . . . . 9
⊢ (𝑎 = {〈𝑏, 𝑐〉} → ((𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉}) ↔ (𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉}))) |
59 | 56, 58 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑎 = {〈𝑏, 𝑐〉} → ((𝑥 = ∪ ran 𝑎 → (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉})) ↔ (𝑥 = ∪ ran
{〈𝑏, 𝑐〉} → (𝑥 ∈ 𝐴 ∧ {〈𝑏, 𝑐〉} = {〈𝑏, 𝑥〉})))) |
60 | 53, 59 | syl5ibrcom 156 |
. . . . . . 7
⊢ (𝑐 ∈ 𝐴 → (𝑎 = {〈𝑏, 𝑐〉} → (𝑥 = ∪ ran 𝑎 → (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉})))) |
61 | 60 | rexlimiv 2577 |
. . . . . 6
⊢
(∃𝑐 ∈
𝐴 𝑎 = {〈𝑏, 𝑐〉} → (𝑥 = ∪ ran 𝑎 → (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉}))) |
62 | 61 | imp 123 |
. . . . 5
⊢
((∃𝑐 ∈
𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎) → (𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉})) |
63 | 41, 62 | impbii 125 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑎 = {〈𝑏, 𝑥〉}) ↔ (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎)) |
64 | 25, 63 | bitri 183 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝑏} × {𝑥})) ↔ (∃𝑐 ∈ 𝐴 𝑎 = {〈𝑏, 𝑐〉} ∧ 𝑥 = ∪ ran 𝑎)) |
65 | 15, 21, 64 | vtoclbg 2787 |
. 2
⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑎 = ({𝐼} × {𝑥})) ↔ (𝑎 ∈ X𝑦 ∈ {𝐼}𝐴 ∧ 𝑥 = ∪ ran 𝑎))) |
66 | 1, 7, 11, 65 | f1od 6041 |
1
⊢ (𝐼 ∈ 𝑉 → 𝐹:𝐴–1-1-onto→X𝑦 ∈
{𝐼}𝐴) |