ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnf1o GIF version

Theorem ixpsnf1o 6710
Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
Assertion
Ref Expression
ixpsnf1o (𝐼𝑉𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
Distinct variable groups:   𝑥,𝐼,𝑦   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦   𝑦,𝐹
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem ixpsnf1o
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . 2 𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))
2 snexg 4168 . . . 4 (𝐼𝑉 → {𝐼} ∈ V)
3 vex 2733 . . . . 5 𝑥 ∈ V
43snex 4169 . . . 4 {𝑥} ∈ V
5 xpexg 4723 . . . 4 (({𝐼} ∈ V ∧ {𝑥} ∈ V) → ({𝐼} × {𝑥}) ∈ V)
62, 4, 5sylancl 411 . . 3 (𝐼𝑉 → ({𝐼} × {𝑥}) ∈ V)
76adantr 274 . 2 ((𝐼𝑉𝑥𝐴) → ({𝐼} × {𝑥}) ∈ V)
8 vex 2733 . . . . 5 𝑎 ∈ V
98rnex 4876 . . . 4 ran 𝑎 ∈ V
109uniex 4420 . . 3 ran 𝑎 ∈ V
1110a1i 9 . 2 ((𝐼𝑉𝑎X𝑦 ∈ {𝐼}𝐴) → ran 𝑎 ∈ V)
12 sneq 3592 . . . . . 6 (𝑏 = 𝐼 → {𝑏} = {𝐼})
1312xpeq1d 4632 . . . . 5 (𝑏 = 𝐼 → ({𝑏} × {𝑥}) = ({𝐼} × {𝑥}))
1413eqeq2d 2182 . . . 4 (𝑏 = 𝐼 → (𝑎 = ({𝑏} × {𝑥}) ↔ 𝑎 = ({𝐼} × {𝑥})))
1514anbi2d 461 . . 3 (𝑏 = 𝐼 → ((𝑥𝐴𝑎 = ({𝑏} × {𝑥})) ↔ (𝑥𝐴𝑎 = ({𝐼} × {𝑥}))))
16 elixpsn 6709 . . . . . 6 (𝑏 ∈ V → (𝑎X𝑦 ∈ {𝑏}𝐴 ↔ ∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩}))
1716elv 2734 . . . . 5 (𝑎X𝑦 ∈ {𝑏}𝐴 ↔ ∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩})
1812ixpeq1d 6684 . . . . . 6 (𝑏 = 𝐼X𝑦 ∈ {𝑏}𝐴 = X𝑦 ∈ {𝐼}𝐴)
1918eleq2d 2240 . . . . 5 (𝑏 = 𝐼 → (𝑎X𝑦 ∈ {𝑏}𝐴𝑎X𝑦 ∈ {𝐼}𝐴))
2017, 19bitr3id 193 . . . 4 (𝑏 = 𝐼 → (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ↔ 𝑎X𝑦 ∈ {𝐼}𝐴))
2120anbi1d 462 . . 3 (𝑏 = 𝐼 → ((∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎) ↔ (𝑎X𝑦 ∈ {𝐼}𝐴𝑥 = ran 𝑎)))
22 vex 2733 . . . . . . 7 𝑏 ∈ V
2322, 3xpsn 5669 . . . . . 6 ({𝑏} × {𝑥}) = {⟨𝑏, 𝑥⟩}
2423eqeq2i 2181 . . . . 5 (𝑎 = ({𝑏} × {𝑥}) ↔ 𝑎 = {⟨𝑏, 𝑥⟩})
2524anbi2i 454 . . . 4 ((𝑥𝐴𝑎 = ({𝑏} × {𝑥})) ↔ (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}))
26 eqid 2170 . . . . . . . . 9 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑥⟩}
27 opeq2 3764 . . . . . . . . . . 11 (𝑐 = 𝑥 → ⟨𝑏, 𝑐⟩ = ⟨𝑏, 𝑥⟩)
2827sneqd 3594 . . . . . . . . . 10 (𝑐 = 𝑥 → {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩})
2928rspceeqv 2852 . . . . . . . . 9 ((𝑥𝐴 ∧ {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑥⟩}) → ∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩})
3026, 29mpan2 423 . . . . . . . 8 (𝑥𝐴 → ∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩})
3122, 3op2nda 5093 . . . . . . . . 9 ran {⟨𝑏, 𝑥⟩} = 𝑥
3231eqcomi 2174 . . . . . . . 8 𝑥 = ran {⟨𝑏, 𝑥⟩}
3330, 32jctir 311 . . . . . . 7 (𝑥𝐴 → (∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran {⟨𝑏, 𝑥⟩}))
34 eqeq1 2177 . . . . . . . . 9 (𝑎 = {⟨𝑏, 𝑥⟩} → (𝑎 = {⟨𝑏, 𝑐⟩} ↔ {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩}))
3534rexbidv 2471 . . . . . . . 8 (𝑎 = {⟨𝑏, 𝑥⟩} → (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ↔ ∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩}))
36 rneq 4836 . . . . . . . . . 10 (𝑎 = {⟨𝑏, 𝑥⟩} → ran 𝑎 = ran {⟨𝑏, 𝑥⟩})
3736unieqd 3805 . . . . . . . . 9 (𝑎 = {⟨𝑏, 𝑥⟩} → ran 𝑎 = ran {⟨𝑏, 𝑥⟩})
3837eqeq2d 2182 . . . . . . . 8 (𝑎 = {⟨𝑏, 𝑥⟩} → (𝑥 = ran 𝑎𝑥 = ran {⟨𝑏, 𝑥⟩}))
3935, 38anbi12d 470 . . . . . . 7 (𝑎 = {⟨𝑏, 𝑥⟩} → ((∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎) ↔ (∃𝑐𝐴 {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran {⟨𝑏, 𝑥⟩})))
4033, 39syl5ibrcom 156 . . . . . 6 (𝑥𝐴 → (𝑎 = {⟨𝑏, 𝑥⟩} → (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎)))
4140imp 123 . . . . 5 ((𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}) → (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎))
42 vex 2733 . . . . . . . . . . 11 𝑐 ∈ V
4322, 42op2nda 5093 . . . . . . . . . 10 ran {⟨𝑏, 𝑐⟩} = 𝑐
4443eqeq2i 2181 . . . . . . . . 9 (𝑥 = ran {⟨𝑏, 𝑐⟩} ↔ 𝑥 = 𝑐)
45 eqidd 2171 . . . . . . . . . . 11 (𝑐𝐴 → {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑐⟩})
4645ancli 321 . . . . . . . . . 10 (𝑐𝐴 → (𝑐𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑐⟩}))
47 eleq1w 2231 . . . . . . . . . . 11 (𝑥 = 𝑐 → (𝑥𝐴𝑐𝐴))
48 opeq2 3764 . . . . . . . . . . . . 13 (𝑥 = 𝑐 → ⟨𝑏, 𝑥⟩ = ⟨𝑏, 𝑐⟩)
4948sneqd 3594 . . . . . . . . . . . 12 (𝑥 = 𝑐 → {⟨𝑏, 𝑥⟩} = {⟨𝑏, 𝑐⟩})
5049eqeq2d 2182 . . . . . . . . . . 11 (𝑥 = 𝑐 → ({⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩} ↔ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑐⟩}))
5147, 50anbi12d 470 . . . . . . . . . 10 (𝑥 = 𝑐 → ((𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩}) ↔ (𝑐𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑐⟩})))
5246, 51syl5ibrcom 156 . . . . . . . . 9 (𝑐𝐴 → (𝑥 = 𝑐 → (𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩})))
5344, 52syl5bi 151 . . . . . . . 8 (𝑐𝐴 → (𝑥 = ran {⟨𝑏, 𝑐⟩} → (𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩})))
54 rneq 4836 . . . . . . . . . . 11 (𝑎 = {⟨𝑏, 𝑐⟩} → ran 𝑎 = ran {⟨𝑏, 𝑐⟩})
5554unieqd 3805 . . . . . . . . . 10 (𝑎 = {⟨𝑏, 𝑐⟩} → ran 𝑎 = ran {⟨𝑏, 𝑐⟩})
5655eqeq2d 2182 . . . . . . . . 9 (𝑎 = {⟨𝑏, 𝑐⟩} → (𝑥 = ran 𝑎𝑥 = ran {⟨𝑏, 𝑐⟩}))
57 eqeq1 2177 . . . . . . . . . 10 (𝑎 = {⟨𝑏, 𝑐⟩} → (𝑎 = {⟨𝑏, 𝑥⟩} ↔ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩}))
5857anbi2d 461 . . . . . . . . 9 (𝑎 = {⟨𝑏, 𝑐⟩} → ((𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}) ↔ (𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩})))
5956, 58imbi12d 233 . . . . . . . 8 (𝑎 = {⟨𝑏, 𝑐⟩} → ((𝑥 = ran 𝑎 → (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩})) ↔ (𝑥 = ran {⟨𝑏, 𝑐⟩} → (𝑥𝐴 ∧ {⟨𝑏, 𝑐⟩} = {⟨𝑏, 𝑥⟩}))))
6053, 59syl5ibrcom 156 . . . . . . 7 (𝑐𝐴 → (𝑎 = {⟨𝑏, 𝑐⟩} → (𝑥 = ran 𝑎 → (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}))))
6160rexlimiv 2581 . . . . . 6 (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} → (𝑥 = ran 𝑎 → (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩})))
6261imp 123 . . . . 5 ((∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎) → (𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}))
6341, 62impbii 125 . . . 4 ((𝑥𝐴𝑎 = {⟨𝑏, 𝑥⟩}) ↔ (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎))
6425, 63bitri 183 . . 3 ((𝑥𝐴𝑎 = ({𝑏} × {𝑥})) ↔ (∃𝑐𝐴 𝑎 = {⟨𝑏, 𝑐⟩} ∧ 𝑥 = ran 𝑎))
6515, 21, 64vtoclbg 2791 . 2 (𝐼𝑉 → ((𝑥𝐴𝑎 = ({𝐼} × {𝑥})) ↔ (𝑎X𝑦 ∈ {𝐼}𝐴𝑥 = ran 𝑎)))
661, 7, 11, 65f1od 6049 1 (𝐼𝑉𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wrex 2449  Vcvv 2730  {csn 3581  cop 3584   cuni 3794  cmpt 4048   × cxp 4607  ran crn 4610  1-1-ontowf1o 5195  Xcixp 6672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ixp 6673
This theorem is referenced by:  mapsnf1o  6711
  Copyright terms: Public domain W3C validator