| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0disj | Structured version Visualization version GIF version | ||
| Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| 0disj | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4399 | . . 3 ⊢ ∅ ⊆ {𝑥} | |
| 2 | 1 | rgenw 3064 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} |
| 3 | sndisj 5134 | . 2 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | |
| 4 | disjss2 5112 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥 ∈ 𝐴 {𝑥} → Disj 𝑥 ∈ 𝐴 ∅)) | |
| 5 | 2, 3, 4 | mp2 9 | 1 ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3060 ⊆ wss 3950 ∅c0 4332 {csn 4625 Disj wdisj 5109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2539 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rmo 3379 df-v 3481 df-dif 3953 df-ss 3967 df-nul 4333 df-sn 4626 df-disj 5110 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |