| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0disj | Structured version Visualization version GIF version | ||
| Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| 0disj | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4347 | . . 3 ⊢ ∅ ⊆ {𝑥} | |
| 2 | 1 | rgenw 3051 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} |
| 3 | sndisj 5081 | . 2 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | |
| 4 | disjss2 5059 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥 ∈ 𝐴 {𝑥} → Disj 𝑥 ∈ 𝐴 ∅)) | |
| 5 | 2, 3, 4 | mp2 9 | 1 ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3047 ⊆ wss 3897 ∅c0 4280 {csn 4573 Disj wdisj 5056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rmo 3346 df-v 3438 df-dif 3900 df-ss 3914 df-nul 4281 df-sn 4574 df-disj 5057 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |