MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0disj Structured version   Visualization version   GIF version

Theorem 0disj 5141
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
0disj Disj 𝑥𝐴

Proof of Theorem 0disj
StepHypRef Expression
1 0ss 4406 . . 3 ∅ ⊆ {𝑥}
21rgenw 3063 . 2 𝑥𝐴 ∅ ⊆ {𝑥}
3 sndisj 5140 . 2 Disj 𝑥𝐴 {𝑥}
4 disjss2 5118 . 2 (∀𝑥𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥𝐴 {𝑥} → Disj 𝑥𝐴 ∅))
52, 3, 4mp2 9 1 Disj 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wral 3059  wss 3963  c0 4339  {csn 4631  Disj wdisj 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rmo 3378  df-v 3480  df-dif 3966  df-ss 3980  df-nul 4340  df-sn 4632  df-disj 5116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator