Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0disj | Structured version Visualization version GIF version |
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
0disj | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4292 | . . 3 ⊢ ∅ ⊆ {𝑥} | |
2 | 1 | rgenw 3082 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} |
3 | sndisj 5023 | . 2 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | |
4 | disjss2 5000 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥 ∈ 𝐴 {𝑥} → Disj 𝑥 ∈ 𝐴 ∅)) | |
5 | 2, 3, 4 | mp2 9 | 1 ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3070 ⊆ wss 3858 ∅c0 4225 {csn 4522 Disj wdisj 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-mo 2557 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rmo 3078 df-v 3411 df-dif 3861 df-in 3865 df-ss 3875 df-nul 4226 df-sn 4523 df-disj 4998 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |