Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0disj | Structured version Visualization version GIF version |
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
0disj | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4335 | . . 3 ⊢ ∅ ⊆ {𝑥} | |
2 | 1 | rgenw 3077 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} |
3 | sndisj 5069 | . 2 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | |
4 | disjss2 5046 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥 ∈ 𝐴 {𝑥} → Disj 𝑥 ∈ 𝐴 ∅)) | |
5 | 2, 3, 4 | mp2 9 | 1 ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3065 ⊆ wss 3891 ∅c0 4261 {csn 4566 Disj wdisj 5043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-mo 2541 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rmo 3073 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-nul 4262 df-sn 4567 df-disj 5044 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |