MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0disj Structured version   Visualization version   GIF version

Theorem 0disj 5070
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
0disj Disj 𝑥𝐴

Proof of Theorem 0disj
StepHypRef Expression
1 0ss 4335 . . 3 ∅ ⊆ {𝑥}
21rgenw 3077 . 2 𝑥𝐴 ∅ ⊆ {𝑥}
3 sndisj 5069 . 2 Disj 𝑥𝐴 {𝑥}
4 disjss2 5046 . 2 (∀𝑥𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥𝐴 {𝑥} → Disj 𝑥𝐴 ∅))
52, 3, 4mp2 9 1 Disj 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wral 3065  wss 3891  c0 4261  {csn 4566  Disj wdisj 5043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-mo 2541  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rmo 3073  df-v 3432  df-dif 3894  df-in 3898  df-ss 3908  df-nul 4262  df-sn 4567  df-disj 5044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator