MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0disj Structured version   Visualization version   GIF version

Theorem 0disj 5159
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
0disj Disj 𝑥𝐴

Proof of Theorem 0disj
StepHypRef Expression
1 0ss 4423 . . 3 ∅ ⊆ {𝑥}
21rgenw 3071 . 2 𝑥𝐴 ∅ ⊆ {𝑥}
3 sndisj 5158 . 2 Disj 𝑥𝐴 {𝑥}
4 disjss2 5136 . 2 (∀𝑥𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥𝐴 {𝑥} → Disj 𝑥𝐴 ∅))
52, 3, 4mp2 9 1 Disj 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wral 3067  wss 3976  c0 4352  {csn 4648  Disj wdisj 5133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rmo 3388  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-sn 4649  df-disj 5134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator