MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0disj Structured version   Visualization version   GIF version

Theorem 0disj 5100
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
0disj Disj 𝑥𝐴

Proof of Theorem 0disj
StepHypRef Expression
1 0ss 4363 . . 3 ∅ ⊆ {𝑥}
21rgenw 3048 . 2 𝑥𝐴 ∅ ⊆ {𝑥}
3 sndisj 5099 . 2 Disj 𝑥𝐴 {𝑥}
4 disjss2 5077 . 2 (∀𝑥𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥𝐴 {𝑥} → Disj 𝑥𝐴 ∅))
52, 3, 4mp2 9 1 Disj 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wral 3044  wss 3914  c0 4296  {csn 4589  Disj wdisj 5074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rmo 3354  df-v 3449  df-dif 3917  df-ss 3931  df-nul 4297  df-sn 4590  df-disj 5075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator