![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0disj | Structured version Visualization version GIF version |
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
0disj | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4401 | . . 3 ⊢ ∅ ⊆ {𝑥} | |
2 | 1 | rgenw 3055 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} |
3 | sndisj 5144 | . 2 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | |
4 | disjss2 5121 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥 ∈ 𝐴 {𝑥} → Disj 𝑥 ∈ 𝐴 ∅)) | |
5 | 2, 3, 4 | mp2 9 | 1 ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∀wral 3051 ⊆ wss 3947 ∅c0 4325 {csn 4633 Disj wdisj 5118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-mo 2529 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rmo 3364 df-v 3464 df-dif 3950 df-ss 3964 df-nul 4326 df-sn 4634 df-disj 5119 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |