MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0disj Structured version   Visualization version   GIF version

Theorem 0disj 5135
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
0disj Disj 𝑥𝐴

Proof of Theorem 0disj
StepHypRef Expression
1 0ss 4399 . . 3 ∅ ⊆ {𝑥}
21rgenw 3064 . 2 𝑥𝐴 ∅ ⊆ {𝑥}
3 sndisj 5134 . 2 Disj 𝑥𝐴 {𝑥}
4 disjss2 5112 . 2 (∀𝑥𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥𝐴 {𝑥} → Disj 𝑥𝐴 ∅))
52, 3, 4mp2 9 1 Disj 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wral 3060  wss 3950  c0 4332  {csn 4625  Disj wdisj 5109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2539  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rmo 3379  df-v 3481  df-dif 3953  df-ss 3967  df-nul 4333  df-sn 4626  df-disj 5110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator