| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0disj | Structured version Visualization version GIF version | ||
| Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| 0disj | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ {𝑥} | |
| 2 | 1 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} |
| 3 | sndisj 5099 | . 2 ⊢ Disj 𝑥 ∈ 𝐴 {𝑥} | |
| 4 | disjss2 5077 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥 ∈ 𝐴 {𝑥} → Disj 𝑥 ∈ 𝐴 ∅)) | |
| 5 | 2, 3, 4 | mp2 9 | 1 ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3044 ⊆ wss 3914 ∅c0 4296 {csn 4589 Disj wdisj 5074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rmo 3354 df-v 3449 df-dif 3917 df-ss 3931 df-nul 4297 df-sn 4590 df-disj 5075 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |