MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0disj Structured version   Visualization version   GIF version

Theorem 0disj 5145
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
0disj Disj 𝑥𝐴

Proof of Theorem 0disj
StepHypRef Expression
1 0ss 4401 . . 3 ∅ ⊆ {𝑥}
21rgenw 3055 . 2 𝑥𝐴 ∅ ⊆ {𝑥}
3 sndisj 5144 . 2 Disj 𝑥𝐴 {𝑥}
4 disjss2 5121 . 2 (∀𝑥𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥𝐴 {𝑥} → Disj 𝑥𝐴 ∅))
52, 3, 4mp2 9 1 Disj 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wral 3051  wss 3947  c0 4325  {csn 4633  Disj wdisj 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-mo 2529  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rmo 3364  df-v 3464  df-dif 3950  df-ss 3964  df-nul 4326  df-sn 4634  df-disj 5119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator