Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem35 Structured version   Visualization version   GIF version

Theorem stoweidlem35 45991
Description: This lemma is used to prove the existence of a function p as in Lemma 1 of [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Here (𝑞𝑖) is used to represent p_(ti) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem35.1 𝑡𝜑
stoweidlem35.2 𝑤𝜑
stoweidlem35.3 𝜑
stoweidlem35.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem35.5 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem35.6 𝐺 = (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
stoweidlem35.7 (𝜑𝐴 ∈ V)
stoweidlem35.8 (𝜑𝑋 ∈ Fin)
stoweidlem35.9 (𝜑𝑋𝑊)
stoweidlem35.10 (𝜑 → (𝑇𝑈) ⊆ 𝑋)
stoweidlem35.11 (𝜑 → (𝑇𝑈) ≠ ∅)
Assertion
Ref Expression
stoweidlem35 (𝜑 → ∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
Distinct variable groups:   ,𝑖,𝑡,𝑤   𝑖,𝑚,𝑞,𝑡   𝑖,𝐺   𝑤,𝑄   𝑇,,𝑤   𝑈,𝑞   𝜑,𝑖,𝑚   𝐴,,𝑡   ,𝑋,𝑖,𝑡,𝑤   𝑤,𝑚   𝑚,𝐺   𝑄,𝑞   𝑇,𝑞   𝑡,𝑍   𝑤,𝑈
Allowed substitution hints:   𝜑(𝑤,𝑡,,𝑞)   𝐴(𝑤,𝑖,𝑚,𝑞)   𝑄(𝑡,,𝑖,𝑚)   𝑇(𝑡,𝑖,𝑚)   𝑈(𝑡,,𝑖,𝑚)   𝐺(𝑤,𝑡,,𝑞)   𝐽(𝑤,𝑡,,𝑖,𝑚,𝑞)   𝑊(𝑤,𝑡,,𝑖,𝑚,𝑞)   𝑋(𝑚,𝑞)   𝑍(𝑤,,𝑖,𝑚,𝑞)

Proof of Theorem stoweidlem35
Dummy variables 𝑓 𝑔 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem35.8 . . . . . . . . . 10 (𝜑𝑋 ∈ Fin)
2 stoweidlem35.6 . . . . . . . . . . 11 𝐺 = (𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
32rnmptfi 45114 . . . . . . . . . 10 (𝑋 ∈ Fin → ran 𝐺 ∈ Fin)
41, 3syl 17 . . . . . . . . 9 (𝜑 → ran 𝐺 ∈ Fin)
5 fnchoice 44967 . . . . . . . . . . 11 (ran 𝐺 ∈ Fin → ∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙)))
65adantl 481 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐺 ∈ Fin) → ∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙)))
7 simprl 771 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙))) → 𝑔 Fn ran 𝐺)
8 stoweidlem35.2 . . . . . . . . . . . . . . . . . . . . 21 𝑤𝜑
9 nfmpt1 5256 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤(𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
102, 9nfcxfr 2901 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤𝐺
1110nfrn 5966 . . . . . . . . . . . . . . . . . . . . . 22 𝑤ran 𝐺
1211nfcri 2895 . . . . . . . . . . . . . . . . . . . . 21 𝑤 𝑘 ∈ ran 𝐺
138, 12nfan 1897 . . . . . . . . . . . . . . . . . . . 20 𝑤(𝜑𝑘 ∈ ran 𝐺)
14 stoweidlem35.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑋𝑊)
1514sselda 3995 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑤𝑋) → 𝑤𝑊)
16 stoweidlem35.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
1715, 16eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑤𝑋) → 𝑤 ∈ {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
18 rabid 3455 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ (𝑤𝐽 ∧ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}))
1917, 18sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑤𝑋) → (𝑤𝐽 ∧ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}))
2019simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑤𝑋) → ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)})
21 df-rex 3069 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)} ↔ ∃(𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}))
2220, 21sylib 218 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑤𝑋) → ∃(𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}))
23 rabid 3455 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ (𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}))
2423exbii 1845 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃ ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ↔ ∃(𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}))
2522, 24sylibr 234 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤𝑋) → ∃ ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
2625adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤𝑋) ∧ 𝑘 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → ∃ ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
27 stoweidlem35.3 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝜑
28 nfv 1912 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑤𝑋
2927, 28nfan 1897 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑤𝑋)
30 nfrab1 3454 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
3130nfeq2 2921 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
3229, 31nfan 1897 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑤𝑋) ∧ 𝑘 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
33 eleq2 2828 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} → (𝑘 ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
3433biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} → ( ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} → 𝑘))
3534adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑤𝑋) ∧ 𝑘 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → ( ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} → 𝑘))
3632, 35eximd 2214 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑤𝑋) ∧ 𝑘 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → (∃ ∈ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} → ∃ 𝑘))
3726, 36mpd 15 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑤𝑋) ∧ 𝑘 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → ∃ 𝑘)
3837adantllr 719 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑘 ∈ ran 𝐺) ∧ 𝑤𝑋) ∧ 𝑘 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}) → ∃ 𝑘)
392elrnmpt 5972 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ran 𝐺 → (𝑘 ∈ ran 𝐺 ↔ ∃𝑤𝑋 𝑘 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}))
4039ibi 267 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ran 𝐺 → ∃𝑤𝑋 𝑘 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
4140adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ran 𝐺) → ∃𝑤𝑋 𝑘 = {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
4213, 38, 41r19.29af 3266 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ran 𝐺) → ∃ 𝑘)
43 n0 4359 . . . . . . . . . . . . . . . . . . 19 (𝑘 ≠ ∅ ↔ ∃ 𝑘)
4442, 43sylibr 234 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ran 𝐺) → 𝑘 ≠ ∅)
4544adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙))) ∧ 𝑘 ∈ ran 𝐺) → 𝑘 ≠ ∅)
46 simplrr 778 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙))) ∧ 𝑘 ∈ ran 𝐺) → ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙))
47 neeq1 3001 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑘 → (𝑙 ≠ ∅ ↔ 𝑘 ≠ ∅))
48 fveq2 6907 . . . . . . . . . . . . . . . . . . . . . 22 (𝑙 = 𝑘 → (𝑔𝑙) = (𝑔𝑘))
4948eleq1d 2824 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑘 → ((𝑔𝑙) ∈ 𝑙 ↔ (𝑔𝑘) ∈ 𝑙))
50 eleq2 2828 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 = 𝑘 → ((𝑔𝑘) ∈ 𝑙 ↔ (𝑔𝑘) ∈ 𝑘))
5149, 50bitrd 279 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑘 → ((𝑔𝑙) ∈ 𝑙 ↔ (𝑔𝑘) ∈ 𝑘))
5247, 51imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑘 → ((𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙) ↔ (𝑘 ≠ ∅ → (𝑔𝑘) ∈ 𝑘)))
5352rspccva 3621 . . . . . . . . . . . . . . . . . 18 ((∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙) ∧ 𝑘 ∈ ran 𝐺) → (𝑘 ≠ ∅ → (𝑔𝑘) ∈ 𝑘))
5446, 53sylancom 588 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙))) ∧ 𝑘 ∈ ran 𝐺) → (𝑘 ≠ ∅ → (𝑔𝑘) ∈ 𝑘))
5545, 54mpd 15 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙))) ∧ 𝑘 ∈ ran 𝐺) → (𝑔𝑘) ∈ 𝑘)
5655ralrimiva 3144 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙))) → ∀𝑘 ∈ ran 𝐺(𝑔𝑘) ∈ 𝑘)
57 fveq2 6907 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑙 → (𝑔𝑘) = (𝑔𝑙))
5857eleq1d 2824 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → ((𝑔𝑘) ∈ 𝑘 ↔ (𝑔𝑙) ∈ 𝑘))
59 eleq2 2828 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑙 → ((𝑔𝑙) ∈ 𝑘 ↔ (𝑔𝑙) ∈ 𝑙))
6058, 59bitrd 279 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑙 → ((𝑔𝑘) ∈ 𝑘 ↔ (𝑔𝑙) ∈ 𝑙))
6160cbvralvw 3235 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ ran 𝐺(𝑔𝑘) ∈ 𝑘 ↔ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙)
6256, 61sylib 218 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙))) → ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙)
637, 62jca 511 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙))) → (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙))
6463ex 412 . . . . . . . . . . . 12 (𝜑 → ((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙)) → (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙)))
6564adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ran 𝐺 ∈ Fin) → ((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙)) → (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙)))
6665eximdv 1915 . . . . . . . . . 10 ((𝜑 ∧ ran 𝐺 ∈ Fin) → (∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑙 ≠ ∅ → (𝑔𝑙) ∈ 𝑙)) → ∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙)))
676, 66mpd 15 . . . . . . . . 9 ((𝜑 ∧ ran 𝐺 ∈ Fin) → ∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙))
684, 67mpdan 687 . . . . . . . 8 (𝜑 → ∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙))
6968ralrimivw 3148 . . . . . . 7 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙))
70 stoweidlem35.10 . . . . . . . . . . . . 13 (𝜑 → (𝑇𝑈) ⊆ 𝑋)
71 stoweidlem35.11 . . . . . . . . . . . . 13 (𝜑 → (𝑇𝑈) ≠ ∅)
72 ssn0 4410 . . . . . . . . . . . . 13 (((𝑇𝑈) ⊆ 𝑋 ∧ (𝑇𝑈) ≠ ∅) → 𝑋 ≠ ∅)
7370, 71, 72syl2anc 584 . . . . . . . . . . . 12 (𝜑 𝑋 ≠ ∅)
7473neneqd 2943 . . . . . . . . . . 11 (𝜑 → ¬ 𝑋 = ∅)
75 unieq 4923 . . . . . . . . . . . 12 (𝑋 = ∅ → 𝑋 = ∅)
76 uni0 4940 . . . . . . . . . . . 12 ∅ = ∅
7775, 76eqtrdi 2791 . . . . . . . . . . 11 (𝑋 = ∅ → 𝑋 = ∅)
7874, 77nsyl 140 . . . . . . . . . 10 (𝜑 → ¬ 𝑋 = ∅)
79 dm0rn0 5938 . . . . . . . . . . 11 (dom 𝐺 = ∅ ↔ ran 𝐺 = ∅)
80 stoweidlem35.4 . . . . . . . . . . . . . . . . . 18 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
81 stoweidlem35.7 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ V)
8280, 81rabexd 5346 . . . . . . . . . . . . . . . . 17 (𝜑𝑄 ∈ V)
83 nfrab1 3454 . . . . . . . . . . . . . . . . . . 19 {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
8480, 83nfcxfr 2901 . . . . . . . . . . . . . . . . . 18 𝑄
8584rabexgf 44962 . . . . . . . . . . . . . . . . 17 (𝑄 ∈ V → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
8682, 85syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
8786adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝑋) → {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ∈ V)
888, 87, 2fmptdf 7137 . . . . . . . . . . . . . 14 (𝜑𝐺:𝑋⟶V)
89 dffn2 6739 . . . . . . . . . . . . . 14 (𝐺 Fn 𝑋𝐺:𝑋⟶V)
9088, 89sylibr 234 . . . . . . . . . . . . 13 (𝜑𝐺 Fn 𝑋)
9190fndmd 6674 . . . . . . . . . . . 12 (𝜑 → dom 𝐺 = 𝑋)
9291eqeq1d 2737 . . . . . . . . . . 11 (𝜑 → (dom 𝐺 = ∅ ↔ 𝑋 = ∅))
9379, 92bitr3id 285 . . . . . . . . . 10 (𝜑 → (ran 𝐺 = ∅ ↔ 𝑋 = ∅))
9478, 93mtbird 325 . . . . . . . . 9 (𝜑 → ¬ ran 𝐺 = ∅)
95 fz1f1o 15743 . . . . . . . . . . 11 (ran 𝐺 ∈ Fin → (ran 𝐺 = ∅ ∨ ((♯‘ran 𝐺) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘ran 𝐺))–1-1-onto→ran 𝐺)))
964, 95syl 17 . . . . . . . . . 10 (𝜑 → (ran 𝐺 = ∅ ∨ ((♯‘ran 𝐺) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘ran 𝐺))–1-1-onto→ran 𝐺)))
9796ord 864 . . . . . . . . 9 (𝜑 → (¬ ran 𝐺 = ∅ → ((♯‘ran 𝐺) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘ran 𝐺))–1-1-onto→ran 𝐺)))
9894, 97mpd 15 . . . . . . . 8 (𝜑 → ((♯‘ran 𝐺) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘ran 𝐺))–1-1-onto→ran 𝐺))
99 oveq2 7439 . . . . . . . . . . 11 (𝑚 = (♯‘ran 𝐺) → (1...𝑚) = (1...(♯‘ran 𝐺)))
10099f1oeq2d 6845 . . . . . . . . . 10 (𝑚 = (♯‘ran 𝐺) → (𝑓:(1...𝑚)–1-1-onto→ran 𝐺𝑓:(1...(♯‘ran 𝐺))–1-1-onto→ran 𝐺))
101100exbidv 1919 . . . . . . . . 9 (𝑚 = (♯‘ran 𝐺) → (∃𝑓 𝑓:(1...𝑚)–1-1-onto→ran 𝐺 ↔ ∃𝑓 𝑓:(1...(♯‘ran 𝐺))–1-1-onto→ran 𝐺))
102101rspcev 3622 . . . . . . . 8 (((♯‘ran 𝐺) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘ran 𝐺))–1-1-onto→ran 𝐺) → ∃𝑚 ∈ ℕ ∃𝑓 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)
10398, 102syl 17 . . . . . . 7 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑓 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)
104 r19.29 3112 . . . . . . 7 ((∀𝑚 ∈ ℕ ∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ ∃𝑚 ∈ ℕ ∃𝑓 𝑓:(1...𝑚)–1-1-onto→ran 𝐺) → ∃𝑚 ∈ ℕ (∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ ∃𝑓 𝑓:(1...𝑚)–1-1-onto→ran 𝐺))
10569, 103, 104syl2anc 584 . . . . . 6 (𝜑 → ∃𝑚 ∈ ℕ (∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ ∃𝑓 𝑓:(1...𝑚)–1-1-onto→ran 𝐺))
106 exdistrv 1953 . . . . . . . . 9 (∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺) ↔ (∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ ∃𝑓 𝑓:(1...𝑚)–1-1-onto→ran 𝐺))
107106biimpri 228 . . . . . . . 8 ((∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ ∃𝑓 𝑓:(1...𝑚)–1-1-onto→ran 𝐺) → ∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺))
108107a1i 11 . . . . . . 7 (𝜑 → ((∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ ∃𝑓 𝑓:(1...𝑚)–1-1-onto→ran 𝐺) → ∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
109108reximdv 3168 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℕ (∃𝑔(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ ∃𝑓 𝑓:(1...𝑚)–1-1-onto→ran 𝐺) → ∃𝑚 ∈ ℕ ∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
110105, 109mpd 15 . . . . 5 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺))
111 df-rex 3069 . . . . 5 (∃𝑚 ∈ ℕ ∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺) ↔ ∃𝑚(𝑚 ∈ ℕ ∧ ∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
112110, 111sylib 218 . . . 4 (𝜑 → ∃𝑚(𝑚 ∈ ℕ ∧ ∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
113 ax-5 1908 . . . . . . . . 9 (𝑚 ∈ ℕ → ∀𝑔 𝑚 ∈ ℕ)
114 19.29 1871 . . . . . . . . 9 ((∀𝑔 𝑚 ∈ ℕ ∧ ∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) → ∃𝑔(𝑚 ∈ ℕ ∧ ∃𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
115113, 114sylan 580 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ ∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) → ∃𝑔(𝑚 ∈ ℕ ∧ ∃𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
116 ax-5 1908 . . . . . . . . . 10 (𝑚 ∈ ℕ → ∀𝑓 𝑚 ∈ ℕ)
117 19.29 1871 . . . . . . . . . 10 ((∀𝑓 𝑚 ∈ ℕ ∧ ∃𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) → ∃𝑓(𝑚 ∈ ℕ ∧ ((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
118116, 117sylan 580 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ ∃𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) → ∃𝑓(𝑚 ∈ ℕ ∧ ((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
119118eximi 1832 . . . . . . . 8 (∃𝑔(𝑚 ∈ ℕ ∧ ∃𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) → ∃𝑔𝑓(𝑚 ∈ ℕ ∧ ((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
120115, 119syl 17 . . . . . . 7 ((𝑚 ∈ ℕ ∧ ∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) → ∃𝑔𝑓(𝑚 ∈ ℕ ∧ ((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
121 df-3an 1088 . . . . . . . . 9 ((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺) ↔ ((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺))
122121anbi2i 623 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) ↔ (𝑚 ∈ ℕ ∧ ((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
1231222exbii 1846 . . . . . . 7 (∃𝑔𝑓(𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) ↔ ∃𝑔𝑓(𝑚 ∈ ℕ ∧ ((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
124120, 123sylibr 234 . . . . . 6 ((𝑚 ∈ ℕ ∧ ∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) → ∃𝑔𝑓(𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
125124a1i 11 . . . . 5 (𝜑 → ((𝑚 ∈ ℕ ∧ ∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) → ∃𝑔𝑓(𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺))))
126125eximdv 1915 . . . 4 (𝜑 → (∃𝑚(𝑚 ∈ ℕ ∧ ∃𝑔𝑓((𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙) ∧ 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) → ∃𝑚𝑔𝑓(𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺))))
127112, 126mpd 15 . . 3 (𝜑 → ∃𝑚𝑔𝑓(𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
12882adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺))) → 𝑄 ∈ V)
129 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺))) → 𝑚 ∈ ℕ)
130 simprr1 1220 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺))) → 𝑔 Fn ran 𝐺)
131 elex 3499 . . . . . . . . 9 (ran 𝐺 ∈ Fin → ran 𝐺 ∈ V)
1324, 131syl 17 . . . . . . . 8 (𝜑 → ran 𝐺 ∈ V)
133132adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺))) → ran 𝐺 ∈ V)
134 simprr2 1221 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺))) → ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙)
13551rspccva 3621 . . . . . . . 8 ((∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑘 ∈ ran 𝐺) → (𝑔𝑘) ∈ 𝑘)
136134, 135sylan 580 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺))) ∧ 𝑘 ∈ ran 𝐺) → (𝑔𝑘) ∈ 𝑘)
137 simprr3 1222 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺))) → 𝑓:(1...𝑚)–1-1-onto→ran 𝐺)
13870adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺))) → (𝑇𝑈) ⊆ 𝑋)
139 stoweidlem35.1 . . . . . . . 8 𝑡𝜑
140 nfv 1912 . . . . . . . . 9 𝑡 𝑚 ∈ ℕ
141 nfcv 2903 . . . . . . . . . . 11 𝑡𝑔
142 nfcv 2903 . . . . . . . . . . . . . 14 𝑡𝑋
143 nfrab1 3454 . . . . . . . . . . . . . . . 16 𝑡{𝑡𝑇 ∣ 0 < (𝑡)}
144143nfeq2 2921 . . . . . . . . . . . . . . 15 𝑡 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}
145 nfv 1912 . . . . . . . . . . . . . . . . . 18 𝑡(𝑍) = 0
146 nfra1 3282 . . . . . . . . . . . . . . . . . 18 𝑡𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1)
147145, 146nfan 1897 . . . . . . . . . . . . . . . . 17 𝑡((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))
148 nfcv 2903 . . . . . . . . . . . . . . . . 17 𝑡𝐴
149147, 148nfrabw 3473 . . . . . . . . . . . . . . . 16 𝑡{𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
15080, 149nfcxfr 2901 . . . . . . . . . . . . . . 15 𝑡𝑄
151144, 150nfrabw 3473 . . . . . . . . . . . . . 14 𝑡{𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
152142, 151nfmpt 5255 . . . . . . . . . . . . 13 𝑡(𝑤𝑋 ↦ {𝑄𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}})
1532, 152nfcxfr 2901 . . . . . . . . . . . 12 𝑡𝐺
154153nfrn 5966 . . . . . . . . . . 11 𝑡ran 𝐺
155141, 154nffn 6668 . . . . . . . . . 10 𝑡 𝑔 Fn ran 𝐺
156 nfv 1912 . . . . . . . . . . 11 𝑡(𝑔𝑙) ∈ 𝑙
157154, 156nfralw 3309 . . . . . . . . . 10 𝑡𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙
158 nfcv 2903 . . . . . . . . . . 11 𝑡𝑓
159 nfcv 2903 . . . . . . . . . . 11 𝑡(1...𝑚)
160158, 159, 154nff1o 6847 . . . . . . . . . 10 𝑡 𝑓:(1...𝑚)–1-1-onto→ran 𝐺
161155, 157, 160nf3an 1899 . . . . . . . . 9 𝑡(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺)
162140, 161nfan 1897 . . . . . . . 8 𝑡(𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺))
163139, 162nfan 1897 . . . . . . 7 𝑡(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
164 nfv 1912 . . . . . . . . 9 𝑤 𝑚 ∈ ℕ
165 nfcv 2903 . . . . . . . . . . 11 𝑤𝑔
166165, 11nffn 6668 . . . . . . . . . 10 𝑤 𝑔 Fn ran 𝐺
167 nfv 1912 . . . . . . . . . . 11 𝑤(𝑔𝑙) ∈ 𝑙
16811, 167nfralw 3309 . . . . . . . . . 10 𝑤𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙
169 nfcv 2903 . . . . . . . . . . 11 𝑤𝑓
170 nfcv 2903 . . . . . . . . . . 11 𝑤(1...𝑚)
171169, 170, 11nff1o 6847 . . . . . . . . . 10 𝑤 𝑓:(1...𝑚)–1-1-onto→ran 𝐺
172166, 168, 171nf3an 1899 . . . . . . . . 9 𝑤(𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺)
173164, 172nfan 1897 . . . . . . . 8 𝑤(𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺))
1748, 173nfan 1897 . . . . . . 7 𝑤(𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺)))
1752, 128, 129, 130, 133, 136, 137, 138, 163, 174, 84stoweidlem27 45983 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺))) → ∃𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
176175ex 412 . . . . 5 (𝜑 → ((𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) → ∃𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))))
1771762eximdv 1917 . . . 4 (𝜑 → (∃𝑔𝑓(𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) → ∃𝑔𝑓𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))))
178177eximdv 1915 . . 3 (𝜑 → (∃𝑚𝑔𝑓(𝑚 ∈ ℕ ∧ (𝑔 Fn ran 𝐺 ∧ ∀𝑙 ∈ ran 𝐺(𝑔𝑙) ∈ 𝑙𝑓:(1...𝑚)–1-1-onto→ran 𝐺)) → ∃𝑚𝑔𝑓𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡)))))
179127, 178mpd 15 . 2 (𝜑 → ∃𝑚𝑔𝑓𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
180 id 22 . . . 4 (∃𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))) → ∃𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
181180exlimivv 1930 . . 3 (∃𝑔𝑓𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))) → ∃𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
182181eximi 1832 . 2 (∃𝑚𝑔𝑓𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))) → ∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
183179, 182syl 17 1 (𝜑 → ∃𝑚𝑞(𝑚 ∈ ℕ ∧ (𝑞:(1...𝑚)⟶𝑄 ∧ ∀𝑡 ∈ (𝑇𝑈)∃𝑖 ∈ (1...𝑚)0 < ((𝑞𝑖)‘𝑡))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086  wal 1535   = wceq 1537  wex 1776  wnf 1780  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  cdif 3960  wss 3963  c0 4339   cuni 4912   class class class wbr 5148  cmpt 5231  dom cdm 5689  ran crn 5690   Fn wfn 6558  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Fincfn 8984  0cc0 11153  1c1 11154   < clt 11293  cle 11294  cn 12264  ...cfz 13544  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367
This theorem is referenced by:  stoweidlem53  46009
  Copyright terms: Public domain W3C validator