MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3 Structured version   Visualization version   GIF version

Theorem iscmet3 24457
Description: The property "𝐷 is a complete metric" expressed in terms of functions on (or any other upper integer set). Thus, we only have to look at functions on , and not all possible Cauchy filters, to determine completeness. (The proof uses countable choice.) (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 5-May-2014.)
Hypotheses
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
iscmet3.2 𝐽 = (MetOpen‘𝐷)
iscmet3.3 (𝜑𝑀 ∈ ℤ)
iscmet3.4 (𝜑𝐷 ∈ (Met‘𝑋))
Assertion
Ref Expression
iscmet3 (𝜑 → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
Distinct variable groups:   𝐷,𝑓   𝑓,𝑋   𝑓,𝐽   𝑓,𝑍   𝑓,𝑀   𝜑,𝑓

Proof of Theorem iscmet3
Dummy variables 𝑔 𝑖 𝑗 𝑘 𝑛 𝑠 𝑡 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.2 . . . . 5 𝐽 = (MetOpen‘𝐷)
21cmetcau 24453 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → 𝑓 ∈ dom (⇝𝑡𝐽))
32a1d 25 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)))
43ralrimiva 3103 . 2 (𝐷 ∈ (CMet‘𝑋) → ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)))
5 iscmet3.4 . . . . 5 (𝜑𝐷 ∈ (Met‘𝑋))
65adantr 481 . . . 4 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → 𝐷 ∈ (Met‘𝑋))
7 simpr 485 . . . . . . . . 9 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → 𝑔 ∈ (CauFil‘𝐷))
8 1rp 12734 . . . . . . . . . . 11 1 ∈ ℝ+
9 rphalfcl 12757 . . . . . . . . . . 11 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
108, 9ax-mp 5 . . . . . . . . . 10 (1 / 2) ∈ ℝ+
11 rpexpcl 13801 . . . . . . . . . 10 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
1210, 11mpan 687 . . . . . . . . 9 (𝑘 ∈ ℤ → ((1 / 2)↑𝑘) ∈ ℝ+)
13 cfili 24432 . . . . . . . . 9 ((𝑔 ∈ (CauFil‘𝐷) ∧ ((1 / 2)↑𝑘) ∈ ℝ+) → ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
147, 12, 13syl2an 596 . . . . . . . 8 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) ∧ 𝑘 ∈ ℤ) → ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
1514ralrimiva 3103 . . . . . . 7 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ∀𝑘 ∈ ℤ ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
16 vex 3436 . . . . . . . 8 𝑔 ∈ V
17 znnen 15921 . . . . . . . . 9 ℤ ≈ ℕ
18 nnenom 13700 . . . . . . . . 9 ℕ ≈ ω
1917, 18entri 8794 . . . . . . . 8 ℤ ≈ ω
20 raleq 3342 . . . . . . . . 9 (𝑡 = (𝑠𝑘) → (∀𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
2120raleqbi1dv 3340 . . . . . . . 8 (𝑡 = (𝑠𝑘) → (∀𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
2216, 19, 21axcc4 10195 . . . . . . 7 (∀𝑘 ∈ ℤ ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → ∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
2315, 22syl 17 . . . . . 6 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
24 iscmet3.3 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
2524ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → 𝑀 ∈ ℤ)
26 iscmet3.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2726uzenom 13684 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑍 ≈ ω)
28 endom 8767 . . . . . . . . . . 11 (𝑍 ≈ ω → 𝑍 ≼ ω)
2925, 27, 283syl 18 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → 𝑍 ≼ ω)
30 dfin5 3895 . . . . . . . . . . . . . . 15 (( I ‘𝑋) ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) = {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)}
31 fzn0 13270 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀...𝑘) ≠ ∅ ↔ 𝑘 ∈ (ℤ𝑀))
3231biimpri 227 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑀) → (𝑀...𝑘) ≠ ∅)
3332, 26eleq2s 2857 . . . . . . . . . . . . . . . . . . 19 (𝑘𝑍 → (𝑀...𝑘) ≠ ∅)
34 metxmet 23487 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
355, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐷 ∈ (∞Met‘𝑋))
3635adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → 𝐷 ∈ (∞Met‘𝑋))
37 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔) → 𝑔 ∈ (CauFil‘𝐷))
38 cfilfil 24431 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑔 ∈ (CauFil‘𝐷)) → 𝑔 ∈ (Fil‘𝑋))
3936, 37, 38syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → 𝑔 ∈ (Fil‘𝑋))
40 simprr 770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → 𝑠:ℤ⟶𝑔)
41 elfzelz 13256 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (𝑀...𝑘) → 𝑛 ∈ ℤ)
42 ffvelrn 6959 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠:ℤ⟶𝑔𝑛 ∈ ℤ) → (𝑠𝑛) ∈ 𝑔)
4340, 41, 42syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑠𝑛) ∈ 𝑔)
44 filelss 23003 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔 ∈ (Fil‘𝑋) ∧ (𝑠𝑛) ∈ 𝑔) → (𝑠𝑛) ⊆ 𝑋)
4539, 43, 44syl2an2r 682 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑠𝑛) ⊆ 𝑋)
4645ralrimiva 3103 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
47 r19.2z 4425 . . . . . . . . . . . . . . . . . . 19 (((𝑀...𝑘) ≠ ∅ ∧ ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋) → ∃𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
4833, 46, 47syl2anr 597 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ∃𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
49 iinss 4986 . . . . . . . . . . . . . . . . . 18 (∃𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
5048, 49syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
516ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝐷 ∈ (Met‘𝑋))
52 elfvdm 6806 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ dom Met)
53 fvi 6844 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ dom Met → ( I ‘𝑋) = 𝑋)
5451, 52, 533syl 18 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ( I ‘𝑋) = 𝑋)
5550, 54sseqtrrd 3962 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ ( I ‘𝑋))
56 sseqin2 4149 . . . . . . . . . . . . . . . 16 ( 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ ( I ‘𝑋) ↔ (( I ‘𝑋) ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) = 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
5755, 56sylib 217 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (( I ‘𝑋) ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) = 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
5830, 57eqtr3id 2792 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)} = 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
5939adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑔 ∈ (Fil‘𝑋))
6043ralrimiva 3103 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔)
6160adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔)
6233adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (𝑀...𝑘) ≠ ∅)
63 fzfid 13693 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (𝑀...𝑘) ∈ Fin)
64 iinfi 9176 . . . . . . . . . . . . . . . . 17 ((𝑔 ∈ (Fil‘𝑋) ∧ (∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔 ∧ (𝑀...𝑘) ≠ ∅ ∧ (𝑀...𝑘) ∈ Fin)) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ (fi‘𝑔))
6559, 61, 62, 63, 64syl13anc 1371 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ (fi‘𝑔))
66 filfi 23010 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (Fil‘𝑋) → (fi‘𝑔) = 𝑔)
6759, 66syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (fi‘𝑔) = 𝑔)
6865, 67eleqtrd 2841 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔)
69 fileln0 23001 . . . . . . . . . . . . . . 15 ((𝑔 ∈ (Fil‘𝑋) ∧ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ≠ ∅)
7039, 68, 69syl2an2r 682 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ≠ ∅)
7158, 70eqnetrd 3011 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)} ≠ ∅)
72 rabn0 4319 . . . . . . . . . . . . 13 ({𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)} ≠ ∅ ↔ ∃𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
7371, 72sylib 217 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ∃𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
7473ralrimiva 3103 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑘𝑍𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
7574adantrrr 722 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ∀𝑘𝑍𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
76 fvex 6787 . . . . . . . . . . 11 ( I ‘𝑋) ∈ V
77 eleq1 2826 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑘) → (𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ (𝑓𝑘) ∈ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)))
78 fvex 6787 . . . . . . . . . . . . 13 (𝑓𝑘) ∈ V
79 eliin 4929 . . . . . . . . . . . . 13 ((𝑓𝑘) ∈ V → ((𝑓𝑘) ∈ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
8078, 79ax-mp 5 . . . . . . . . . . . 12 ((𝑓𝑘) ∈ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))
8177, 80bitrdi 287 . . . . . . . . . . 11 (𝑥 = (𝑓𝑘) → (𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
8276, 81axcc4dom 10197 . . . . . . . . . 10 ((𝑍 ≼ ω ∧ ∀𝑘𝑍𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) → ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
8329, 75, 82syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
84 df-ral 3069 . . . . . . . . . . . . 13 (∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) ↔ ∀𝑓(𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
85 19.29 1876 . . . . . . . . . . . . 13 ((∀𝑓(𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → ∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))))
8684, 85sylanb 581 . . . . . . . . . . . 12 ((∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → ∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))))
8724ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑀 ∈ ℤ)
885ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝐷 ∈ (Met‘𝑋))
89 simprrl 778 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓:𝑍⟶( I ‘𝑋))
90 feq3 6583 . . . . . . . . . . . . . . . . 17 (( I ‘𝑋) = 𝑋 → (𝑓:𝑍⟶( I ‘𝑋) ↔ 𝑓:𝑍𝑋))
9188, 52, 53, 904syl 19 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝑓:𝑍⟶( I ‘𝑋) ↔ 𝑓:𝑍𝑋))
9289, 91mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓:𝑍𝑋)
93 simplrr 775 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
9493simprd 496 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
95 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (𝑠𝑘) = (𝑠𝑖))
96 oveq2 7283 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑖))
9796breq2d 5086 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ (𝑢𝐷𝑣) < ((1 / 2)↑𝑖)))
9895, 97raleqbidv 3336 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖)))
9995, 98raleqbidv 3336 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑢 ∈ (𝑠𝑖)∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖)))
10099cbvralvw 3383 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑖 ∈ ℤ ∀𝑢 ∈ (𝑠𝑖)∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖))
10194, 100sylib 217 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑖 ∈ ℤ ∀𝑢 ∈ (𝑠𝑖)∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖))
102 simprrr 779 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))
103 fveq2 6774 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → (𝑠𝑛) = (𝑠𝑗))
104103eleq2d 2824 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → ((𝑓𝑘) ∈ (𝑠𝑛) ↔ (𝑓𝑘) ∈ (𝑠𝑗)))
105104cbvralvw 3383 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛) ↔ ∀𝑗 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑗))
106 oveq2 7283 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝑀...𝑘) = (𝑀...𝑖))
107 fveq2 6774 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝑓𝑘) = (𝑓𝑖))
108107eleq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝑓𝑘) ∈ (𝑠𝑗) ↔ (𝑓𝑖) ∈ (𝑠𝑗)))
109106, 108raleqbidv 3336 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (∀𝑗 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑗) ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗)))
110105, 109bitrid 282 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛) ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗)))
111110cbvralvw 3383 . . . . . . . . . . . . . . . 16 (∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛) ↔ ∀𝑖𝑍𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗))
112102, 111sylib 217 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑖𝑍𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗))
11388, 34syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝐷 ∈ (∞Met‘𝑋))
114 simplrl 774 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑔 ∈ (CauFil‘𝐷))
115113, 114, 38syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑔 ∈ (Fil‘𝑋))
11693simpld 495 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑠:ℤ⟶𝑔)
11726, 1, 87, 88, 92, 101, 112iscmet3lem1 24455 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓 ∈ (Cau‘𝐷))
118 simprl 768 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
119117, 92, 118mp2d 49 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓 ∈ dom (⇝𝑡𝐽))
12026, 1, 87, 88, 92, 101, 112, 115, 116, 119iscmet3lem2 24456 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝐽 fLim 𝑔) ≠ ∅)
121120ex 413 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → (𝐽 fLim 𝑔) ≠ ∅))
122121exlimdv 1936 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → (𝐽 fLim 𝑔) ≠ ∅))
12386, 122syl5 34 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ((∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → (𝐽 fLim 𝑔) ≠ ∅))
124123expdimp 453 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → (∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)) → (𝐽 fLim 𝑔) ≠ ∅))
125124an32s 649 . . . . . . . . 9 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)) → (𝐽 fLim 𝑔) ≠ ∅))
12683, 125mpd 15 . . . . . . . 8 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (𝐽 fLim 𝑔) ≠ ∅)
127126expr 457 . . . . . . 7 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ((𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → (𝐽 fLim 𝑔) ≠ ∅))
128127exlimdv 1936 . . . . . 6 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → (∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → (𝐽 fLim 𝑔) ≠ ∅))
12923, 128mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝑔) ≠ ∅)
130129ralrimiva 3103 . . . 4 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → ∀𝑔 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑔) ≠ ∅)
1311iscmet 24448 . . . 4 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑔 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑔) ≠ ∅))
1326, 130, 131sylanbrc 583 . . 3 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → 𝐷 ∈ (CMet‘𝑋))
133132ex 413 . 2 (𝜑 → (∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) → 𝐷 ∈ (CMet‘𝑋)))
1344, 133impbid2 225 1 (𝜑 → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cin 3886  wss 3887  c0 4256   ciin 4925   class class class wbr 5074   I cid 5488  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  ωcom 7712  cen 8730  cdom 8731  Fincfn 8733  ficfi 9169  1c1 10872   < clt 11009   / cdiv 11632  cn 11973  2c2 12028  cz 12319  cuz 12582  +crp 12730  ...cfz 13239  cexp 13782  ∞Metcxmet 20582  Metcmet 20583  MetOpencmopn 20587  𝑡clm 22377  Filcfil 22996   fLim cflim 23085  CauFilccfil 24416  Cauccau 24417  CMetccmet 24418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-fz 13240  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-bases 22096  df-ntr 22171  df-nei 22249  df-lm 22380  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-cfil 24419  df-cau 24420  df-cmet 24421
This theorem is referenced by:  iscmet2  24458  iscmet3i  24476  heibor1  35968  rrncms  35991
  Copyright terms: Public domain W3C validator