Step | Hyp | Ref
| Expression |
1 | | iscmet3.2 |
. . . . 5
⊢ 𝐽 = (MetOpen‘𝐷) |
2 | 1 | cmetcau 24358 |
. . . 4
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → 𝑓 ∈ dom
(⇝𝑡‘𝐽)) |
3 | 2 | a1d 25 |
. . 3
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) |
4 | 3 | ralrimiva 3107 |
. 2
⊢ (𝐷 ∈ (CMet‘𝑋) → ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) |
5 | | iscmet3.4 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
6 | 5 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) → 𝐷 ∈ (Met‘𝑋)) |
7 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → 𝑔 ∈ (CauFil‘𝐷)) |
8 | | 1rp 12663 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ+ |
9 | | rphalfcl 12686 |
. . . . . . . . . . 11
⊢ (1 ∈
ℝ+ → (1 / 2) ∈ ℝ+) |
10 | 8, 9 | ax-mp 5 |
. . . . . . . . . 10
⊢ (1 / 2)
∈ ℝ+ |
11 | | rpexpcl 13729 |
. . . . . . . . . 10
⊢ (((1 / 2)
∈ ℝ+ ∧ 𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈
ℝ+) |
12 | 10, 11 | mpan 686 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℤ → ((1 /
2)↑𝑘) ∈
ℝ+) |
13 | | cfili 24337 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (CauFil‘𝐷) ∧ ((1 / 2)↑𝑘) ∈ ℝ+)
→ ∃𝑡 ∈
𝑔 ∀𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) |
14 | 7, 12, 13 | syl2an 595 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) ∧ 𝑘 ∈ ℤ) → ∃𝑡 ∈ 𝑔 ∀𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) |
15 | 14 | ralrimiva 3107 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ∀𝑘 ∈ ℤ ∃𝑡 ∈ 𝑔 ∀𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) |
16 | | vex 3426 |
. . . . . . . 8
⊢ 𝑔 ∈ V |
17 | | znnen 15849 |
. . . . . . . . 9
⊢ ℤ
≈ ℕ |
18 | | nnenom 13628 |
. . . . . . . . 9
⊢ ℕ
≈ ω |
19 | 17, 18 | entri 8749 |
. . . . . . . 8
⊢ ℤ
≈ ω |
20 | | raleq 3333 |
. . . . . . . . 9
⊢ (𝑡 = (𝑠‘𝑘) → (∀𝑣 ∈ 𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))) |
21 | 20 | raleqbi1dv 3331 |
. . . . . . . 8
⊢ (𝑡 = (𝑠‘𝑘) → (∀𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))) |
22 | 16, 19, 21 | axcc4 10126 |
. . . . . . 7
⊢
(∀𝑘 ∈
ℤ ∃𝑡 ∈
𝑔 ∀𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → ∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))) |
23 | 15, 22 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))) |
24 | | iscmet3.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
25 | 24 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → 𝑀 ∈ ℤ) |
26 | | iscmet3.1 |
. . . . . . . . . . . 12
⊢ 𝑍 =
(ℤ≥‘𝑀) |
27 | 26 | uzenom 13612 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → 𝑍 ≈
ω) |
28 | | endom 8722 |
. . . . . . . . . . 11
⊢ (𝑍 ≈ ω → 𝑍 ≼
ω) |
29 | 25, 27, 28 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → 𝑍 ≼ ω) |
30 | | dfin5 3891 |
. . . . . . . . . . . . . . 15
⊢ (( I
‘𝑋) ∩ ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) = {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)} |
31 | | fzn0 13199 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀...𝑘) ≠ ∅ ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
32 | 31 | biimpri 227 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑀...𝑘) ≠ ∅) |
33 | 32, 26 | eleq2s 2857 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ 𝑍 → (𝑀...𝑘) ≠ ∅) |
34 | | metxmet 23395 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
35 | 5, 34 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
36 | 35 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) → 𝐷 ∈ (∞Met‘𝑋)) |
37 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔) → 𝑔 ∈ (CauFil‘𝐷)) |
38 | | cfilfil 24336 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑔 ∈ (CauFil‘𝐷)) → 𝑔 ∈ (Fil‘𝑋)) |
39 | 36, 37, 38 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → 𝑔 ∈ (Fil‘𝑋)) |
40 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → 𝑠:ℤ⟶𝑔) |
41 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ (𝑀...𝑘) → 𝑛 ∈ ℤ) |
42 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑠:ℤ⟶𝑔 ∧ 𝑛 ∈ ℤ) → (𝑠‘𝑛) ∈ 𝑔) |
43 | 40, 41, 42 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑠‘𝑛) ∈ 𝑔) |
44 | | filelss 22911 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑔 ∈ (Fil‘𝑋) ∧ (𝑠‘𝑛) ∈ 𝑔) → (𝑠‘𝑛) ⊆ 𝑋) |
45 | 39, 43, 44 | syl2an2r 681 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑠‘𝑛) ⊆ 𝑋) |
46 | 45 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋) |
47 | | r19.2z 4422 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀...𝑘) ≠ ∅ ∧ ∀𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋) → ∃𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋) |
48 | 33, 46, 47 | syl2anr 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∃𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋) |
49 | | iinss 4982 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑛 ∈
(𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋 → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋) |
51 | 6 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → 𝐷 ∈ (Met‘𝑋)) |
52 | | elfvdm 6788 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ dom Met) |
53 | | fvi 6826 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ dom Met → ( I
‘𝑋) = 𝑋) |
54 | 51, 52, 53 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ( I ‘𝑋) = 𝑋) |
55 | 50, 54 | sseqtrrd 3958 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ ( I ‘𝑋)) |
56 | | sseqin2 4146 |
. . . . . . . . . . . . . . . 16
⊢ (∩ 𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ ( I ‘𝑋) ↔ (( I ‘𝑋) ∩ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) = ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) |
57 | 55, 56 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → (( I ‘𝑋) ∩ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) = ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) |
58 | 30, 57 | eqtr3id 2793 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)} = ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) |
59 | 39 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → 𝑔 ∈ (Fil‘𝑋)) |
60 | 43 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ 𝑔) |
61 | 60 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ 𝑔) |
62 | 33 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → (𝑀...𝑘) ≠ ∅) |
63 | | fzfid 13621 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → (𝑀...𝑘) ∈ Fin) |
64 | | iinfi 9106 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ (Fil‘𝑋) ∧ (∀𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ 𝑔 ∧ (𝑀...𝑘) ≠ ∅ ∧ (𝑀...𝑘) ∈ Fin)) → ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ (fi‘𝑔)) |
65 | 59, 61, 62, 63, 64 | syl13anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ (fi‘𝑔)) |
66 | | filfi 22918 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ (Fil‘𝑋) → (fi‘𝑔) = 𝑔) |
67 | 59, 66 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → (fi‘𝑔) = 𝑔) |
68 | 65, 67 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ 𝑔) |
69 | | fileln0 22909 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ∈ (Fil‘𝑋) ∧ ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ 𝑔) → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ≠ ∅) |
70 | 39, 68, 69 | syl2an2r 681 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ≠ ∅) |
71 | 58, 70 | eqnetrd 3010 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)} ≠ ∅) |
72 | | rabn0 4316 |
. . . . . . . . . . . . 13
⊢ ({𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)} ≠ ∅ ↔ ∃𝑥 ∈ ( I ‘𝑋)𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) |
73 | 71, 72 | sylib 217 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∃𝑥 ∈ ( I ‘𝑋)𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) |
74 | 73 | ralrimiva 3107 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑘 ∈ 𝑍 ∃𝑥 ∈ ( I ‘𝑋)𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) |
75 | 74 | adantrrr 721 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ∀𝑘 ∈ 𝑍 ∃𝑥 ∈ ( I ‘𝑋)𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) |
76 | | fvex 6769 |
. . . . . . . . . . 11
⊢ ( I
‘𝑋) ∈
V |
77 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑓‘𝑘) → (𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ↔ (𝑓‘𝑘) ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛))) |
78 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢ (𝑓‘𝑘) ∈ V |
79 | | eliin 4926 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑘) ∈ V → ((𝑓‘𝑘) ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) |
80 | 78, 79 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑘) ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)) |
81 | 77, 80 | bitrdi 286 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑓‘𝑘) → (𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) |
82 | 76, 81 | axcc4dom 10128 |
. . . . . . . . . 10
⊢ ((𝑍 ≼ ω ∧
∀𝑘 ∈ 𝑍 ∃𝑥 ∈ ( I ‘𝑋)𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) → ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) |
83 | 29, 75, 82 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) |
84 | | df-ral 3068 |
. . . . . . . . . . . . 13
⊢
(∀𝑓 ∈
(Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)) ↔ ∀𝑓(𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)))) |
85 | | 19.29 1877 |
. . . . . . . . . . . . 13
⊢
((∀𝑓(𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) → ∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) |
86 | 84, 85 | sylanb 580 |
. . . . . . . . . . . 12
⊢
((∀𝑓 ∈
(Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) → ∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) |
87 | 24 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑀 ∈ ℤ) |
88 | 5 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝐷 ∈ (Met‘𝑋)) |
89 | | simprrl 777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑓:𝑍⟶( I ‘𝑋)) |
90 | | feq3 6567 |
. . . . . . . . . . . . . . . . 17
⊢ (( I
‘𝑋) = 𝑋 → (𝑓:𝑍⟶( I ‘𝑋) ↔ 𝑓:𝑍⟶𝑋)) |
91 | 88, 52, 53, 90 | 4syl 19 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → (𝑓:𝑍⟶( I ‘𝑋) ↔ 𝑓:𝑍⟶𝑋)) |
92 | 89, 91 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑓:𝑍⟶𝑋) |
93 | | simplrr 774 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))) |
94 | 93 | simprd 495 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) |
95 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑖 → (𝑠‘𝑘) = (𝑠‘𝑖)) |
96 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑖 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑖)) |
97 | 96 | breq2d 5082 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑖 → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ (𝑢𝐷𝑣) < ((1 / 2)↑𝑖))) |
98 | 95, 97 | raleqbidv 3327 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑖 → (∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑣 ∈ (𝑠‘𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖))) |
99 | 95, 98 | raleqbidv 3327 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑖 → (∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑢 ∈ (𝑠‘𝑖)∀𝑣 ∈ (𝑠‘𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖))) |
100 | 99 | cbvralvw 3372 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
ℤ ∀𝑢 ∈
(𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑖 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑖)∀𝑣 ∈ (𝑠‘𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖)) |
101 | 94, 100 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → ∀𝑖 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑖)∀𝑣 ∈ (𝑠‘𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖)) |
102 | | simprrr 778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)) |
103 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑗 → (𝑠‘𝑛) = (𝑠‘𝑗)) |
104 | 103 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑗 → ((𝑓‘𝑘) ∈ (𝑠‘𝑛) ↔ (𝑓‘𝑘) ∈ (𝑠‘𝑗))) |
105 | 104 | cbvralvw 3372 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑛 ∈
(𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛) ↔ ∀𝑗 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑗)) |
106 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑖 → (𝑀...𝑘) = (𝑀...𝑖)) |
107 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑖 → (𝑓‘𝑘) = (𝑓‘𝑖)) |
108 | 107 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑖 → ((𝑓‘𝑘) ∈ (𝑠‘𝑗) ↔ (𝑓‘𝑖) ∈ (𝑠‘𝑗))) |
109 | 106, 108 | raleqbidv 3327 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑗) ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝑓‘𝑖) ∈ (𝑠‘𝑗))) |
110 | 105, 109 | syl5bb 282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑖 → (∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛) ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝑓‘𝑖) ∈ (𝑠‘𝑗))) |
111 | 110 | cbvralvw 3372 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛) ↔ ∀𝑖 ∈ 𝑍 ∀𝑗 ∈ (𝑀...𝑖)(𝑓‘𝑖) ∈ (𝑠‘𝑗)) |
112 | 102, 111 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → ∀𝑖 ∈ 𝑍 ∀𝑗 ∈ (𝑀...𝑖)(𝑓‘𝑖) ∈ (𝑠‘𝑗)) |
113 | 88, 34 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝐷 ∈ (∞Met‘𝑋)) |
114 | | simplrl 773 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑔 ∈ (CauFil‘𝐷)) |
115 | 113, 114,
38 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑔 ∈ (Fil‘𝑋)) |
116 | 93 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑠:ℤ⟶𝑔) |
117 | 26, 1, 87, 88, 92, 101, 112 | iscmet3lem1 24360 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑓 ∈ (Cau‘𝐷)) |
118 | | simprl 767 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → (𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)))) |
119 | 117, 92, 118 | mp2d 49 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑓 ∈ dom
(⇝𝑡‘𝐽)) |
120 | 26, 1, 87, 88, 92, 101, 112, 115, 116, 119 | iscmet3lem2 24361 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → (𝐽 fLim 𝑔) ≠ ∅) |
121 | 120 | ex 412 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) → (𝐽 fLim 𝑔) ≠ ∅)) |
122 | 121 | exlimdv 1937 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) → (𝐽 fLim 𝑔) ≠ ∅)) |
123 | 86, 122 | syl5 34 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ((∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) → (𝐽 fLim 𝑔) ≠ ∅)) |
124 | 123 | expdimp 452 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) → (∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)) → (𝐽 fLim 𝑔) ≠ ∅)) |
125 | 124 | an32s 648 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)) → (𝐽 fLim 𝑔) ≠ ∅)) |
126 | 83, 125 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (𝐽 fLim 𝑔) ≠ ∅) |
127 | 126 | expr 456 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ((𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → (𝐽 fLim 𝑔) ≠ ∅)) |
128 | 127 | exlimdv 1937 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → (∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → (𝐽 fLim 𝑔) ≠ ∅)) |
129 | 23, 128 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝑔) ≠ ∅) |
130 | 129 | ralrimiva 3107 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) → ∀𝑔 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑔) ≠ ∅) |
131 | 1 | iscmet 24353 |
. . . 4
⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑔 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑔) ≠ ∅)) |
132 | 6, 130, 131 | sylanbrc 582 |
. . 3
⊢ ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) → 𝐷 ∈ (CMet‘𝑋)) |
133 | 132 | ex 412 |
. 2
⊢ (𝜑 → (∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)) → 𝐷 ∈ (CMet‘𝑋))) |
134 | 4, 133 | impbid2 225 |
1
⊢ (𝜑 → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)))) |