MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3 Structured version   Visualization version   GIF version

Theorem iscmet3 23309
Description: The property "𝐷 is a complete metric" expressed in terms of functions on (or any other upper integer set). Thus, we only have to look at functions on , and not all possible Cauchy filters, to determine completeness. (The proof uses countable choice.) (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 5-May-2014.)
Hypotheses
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
iscmet3.2 𝐽 = (MetOpen‘𝐷)
iscmet3.3 (𝜑𝑀 ∈ ℤ)
iscmet3.4 (𝜑𝐷 ∈ (Met‘𝑋))
Assertion
Ref Expression
iscmet3 (𝜑 → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
Distinct variable groups:   𝐷,𝑓   𝑓,𝑋   𝑓,𝐽   𝑓,𝑍   𝑓,𝑀   𝜑,𝑓

Proof of Theorem iscmet3
Dummy variables 𝑔 𝑖 𝑗 𝑘 𝑛 𝑠 𝑡 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.2 . . . . 5 𝐽 = (MetOpen‘𝐷)
21cmetcau 23305 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → 𝑓 ∈ dom (⇝𝑡𝐽))
32a1d 25 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)))
43ralrimiva 3115 . 2 (𝐷 ∈ (CMet‘𝑋) → ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)))
5 iscmet3.4 . . . . 5 (𝜑𝐷 ∈ (Met‘𝑋))
65adantr 466 . . . 4 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → 𝐷 ∈ (Met‘𝑋))
7 simpr 471 . . . . . . . . 9 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → 𝑔 ∈ (CauFil‘𝐷))
8 1rp 12038 . . . . . . . . . . 11 1 ∈ ℝ+
9 rphalfcl 12060 . . . . . . . . . . 11 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
108, 9ax-mp 5 . . . . . . . . . 10 (1 / 2) ∈ ℝ+
11 rpexpcl 13085 . . . . . . . . . 10 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
1210, 11mpan 670 . . . . . . . . 9 (𝑘 ∈ ℤ → ((1 / 2)↑𝑘) ∈ ℝ+)
13 cfili 23284 . . . . . . . . 9 ((𝑔 ∈ (CauFil‘𝐷) ∧ ((1 / 2)↑𝑘) ∈ ℝ+) → ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
147, 12, 13syl2an 583 . . . . . . . 8 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) ∧ 𝑘 ∈ ℤ) → ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
1514ralrimiva 3115 . . . . . . 7 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ∀𝑘 ∈ ℤ ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
16 vex 3354 . . . . . . . 8 𝑔 ∈ V
17 znnen 15146 . . . . . . . . 9 ℤ ≈ ℕ
18 nnenom 12986 . . . . . . . . 9 ℕ ≈ ω
1917, 18entri 8166 . . . . . . . 8 ℤ ≈ ω
20 raleq 3287 . . . . . . . . 9 (𝑡 = (𝑠𝑘) → (∀𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
2120raleqbi1dv 3295 . . . . . . . 8 (𝑡 = (𝑠𝑘) → (∀𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
2216, 19, 21axcc4 9466 . . . . . . 7 (∀𝑘 ∈ ℤ ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → ∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
2315, 22syl 17 . . . . . 6 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
24 iscmet3.3 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
2524ad2antrr 705 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → 𝑀 ∈ ℤ)
26 iscmet3.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2726uzenom 12970 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑍 ≈ ω)
28 endom 8139 . . . . . . . . . . 11 (𝑍 ≈ ω → 𝑍 ≼ ω)
2925, 27, 283syl 18 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → 𝑍 ≼ ω)
30 dfin5 3731 . . . . . . . . . . . . . . 15 (( I ‘𝑋) ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) = {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)}
31 fzn0 12561 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀...𝑘) ≠ ∅ ↔ 𝑘 ∈ (ℤ𝑀))
3231biimpri 218 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑀) → (𝑀...𝑘) ≠ ∅)
3332, 26eleq2s 2868 . . . . . . . . . . . . . . . . . . 19 (𝑘𝑍 → (𝑀...𝑘) ≠ ∅)
34 simprr 756 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → 𝑠:ℤ⟶𝑔)
35 elfzelz 12548 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (𝑀...𝑘) → 𝑛 ∈ ℤ)
36 ffvelrn 6502 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠:ℤ⟶𝑔𝑛 ∈ ℤ) → (𝑠𝑛) ∈ 𝑔)
3734, 35, 36syl2an 583 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑠𝑛) ∈ 𝑔)
38 metxmet 22358 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
395, 38syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐷 ∈ (∞Met‘𝑋))
4039adantr 466 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → 𝐷 ∈ (∞Met‘𝑋))
41 simpl 468 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔) → 𝑔 ∈ (CauFil‘𝐷))
42 cfilfil 23283 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑔 ∈ (CauFil‘𝐷)) → 𝑔 ∈ (Fil‘𝑋))
4340, 41, 42syl2an 583 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → 𝑔 ∈ (Fil‘𝑋))
44 filelss 21875 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 ∈ (Fil‘𝑋) ∧ (𝑠𝑛) ∈ 𝑔) → (𝑠𝑛) ⊆ 𝑋)
4543, 44sylan 569 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ (𝑠𝑛) ∈ 𝑔) → (𝑠𝑛) ⊆ 𝑋)
4637, 45syldan 579 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑠𝑛) ⊆ 𝑋)
4746ralrimiva 3115 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
48 r19.2z 4202 . . . . . . . . . . . . . . . . . . 19 (((𝑀...𝑘) ≠ ∅ ∧ ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋) → ∃𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
4933, 47, 48syl2anr 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ∃𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
50 iinss 4706 . . . . . . . . . . . . . . . . . 18 (∃𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
5149, 50syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
526ad2antrr 705 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝐷 ∈ (Met‘𝑋))
53 elfvdm 6363 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ dom Met)
54 fvi 6399 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ dom Met → ( I ‘𝑋) = 𝑋)
5552, 53, 543syl 18 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ( I ‘𝑋) = 𝑋)
5651, 55sseqtr4d 3791 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ ( I ‘𝑋))
57 sseqin2 3968 . . . . . . . . . . . . . . . 16 ( 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ ( I ‘𝑋) ↔ (( I ‘𝑋) ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) = 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
5856, 57sylib 208 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (( I ‘𝑋) ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) = 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
5930, 58syl5eqr 2819 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)} = 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
6043adantr 466 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑔 ∈ (Fil‘𝑋))
6137ralrimiva 3115 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔)
6261adantr 466 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔)
6333adantl 467 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (𝑀...𝑘) ≠ ∅)
64 fzfid 12979 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (𝑀...𝑘) ∈ Fin)
65 iinfi 8482 . . . . . . . . . . . . . . . . 17 ((𝑔 ∈ (Fil‘𝑋) ∧ (∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔 ∧ (𝑀...𝑘) ≠ ∅ ∧ (𝑀...𝑘) ∈ Fin)) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ (fi‘𝑔))
6660, 62, 63, 64, 65syl13anc 1478 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ (fi‘𝑔))
67 filfi 21882 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (Fil‘𝑋) → (fi‘𝑔) = 𝑔)
6860, 67syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (fi‘𝑔) = 𝑔)
6966, 68eleqtrd 2852 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔)
70 fileln0 21873 . . . . . . . . . . . . . . 15 ((𝑔 ∈ (Fil‘𝑋) ∧ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ≠ ∅)
7160, 69, 70syl2anc 573 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ≠ ∅)
7259, 71eqnetrd 3010 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)} ≠ ∅)
73 rabn0 4105 . . . . . . . . . . . . 13 ({𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)} ≠ ∅ ↔ ∃𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
7472, 73sylib 208 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ∃𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
7574ralrimiva 3115 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑘𝑍𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
7675adantrrr 704 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ∀𝑘𝑍𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
77 fvex 6344 . . . . . . . . . . 11 ( I ‘𝑋) ∈ V
78 eleq1 2838 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑘) → (𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ (𝑓𝑘) ∈ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)))
79 fvex 6344 . . . . . . . . . . . . 13 (𝑓𝑘) ∈ V
80 eliin 4660 . . . . . . . . . . . . 13 ((𝑓𝑘) ∈ V → ((𝑓𝑘) ∈ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
8179, 80ax-mp 5 . . . . . . . . . . . 12 ((𝑓𝑘) ∈ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))
8278, 81syl6bb 276 . . . . . . . . . . 11 (𝑥 = (𝑓𝑘) → (𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
8377, 82axcc4dom 9468 . . . . . . . . . 10 ((𝑍 ≼ ω ∧ ∀𝑘𝑍𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) → ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
8429, 76, 83syl2anc 573 . . . . . . . . 9 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
85 df-ral 3066 . . . . . . . . . . . . 13 (∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) ↔ ∀𝑓(𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
86 19.29 1953 . . . . . . . . . . . . 13 ((∀𝑓(𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → ∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))))
8785, 86sylanb 570 . . . . . . . . . . . 12 ((∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → ∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))))
8824ad2antrr 705 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑀 ∈ ℤ)
895ad2antrr 705 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝐷 ∈ (Met‘𝑋))
90 simprrl 766 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓:𝑍⟶( I ‘𝑋))
91 feq3 6167 . . . . . . . . . . . . . . . . 17 (( I ‘𝑋) = 𝑋 → (𝑓:𝑍⟶( I ‘𝑋) ↔ 𝑓:𝑍𝑋))
9289, 53, 54, 914syl 19 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝑓:𝑍⟶( I ‘𝑋) ↔ 𝑓:𝑍𝑋))
9390, 92mpbid 222 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓:𝑍𝑋)
94 simplrr 763 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
9594simprd 483 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
96 fveq2 6333 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (𝑠𝑘) = (𝑠𝑖))
97 oveq2 6803 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑖))
9897breq2d 4799 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ (𝑢𝐷𝑣) < ((1 / 2)↑𝑖)))
9996, 98raleqbidv 3301 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖)))
10096, 99raleqbidv 3301 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑢 ∈ (𝑠𝑖)∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖)))
101100cbvralv 3320 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑖 ∈ ℤ ∀𝑢 ∈ (𝑠𝑖)∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖))
10295, 101sylib 208 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑖 ∈ ℤ ∀𝑢 ∈ (𝑠𝑖)∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖))
103 simprrr 767 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))
104 fveq2 6333 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → (𝑠𝑛) = (𝑠𝑗))
105104eleq2d 2836 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → ((𝑓𝑘) ∈ (𝑠𝑛) ↔ (𝑓𝑘) ∈ (𝑠𝑗)))
106105cbvralv 3320 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛) ↔ ∀𝑗 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑗))
107 oveq2 6803 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝑀...𝑘) = (𝑀...𝑖))
108 fveq2 6333 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝑓𝑘) = (𝑓𝑖))
109108eleq1d 2835 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝑓𝑘) ∈ (𝑠𝑗) ↔ (𝑓𝑖) ∈ (𝑠𝑗)))
110107, 109raleqbidv 3301 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (∀𝑗 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑗) ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗)))
111106, 110syl5bb 272 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛) ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗)))
112111cbvralv 3320 . . . . . . . . . . . . . . . 16 (∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛) ↔ ∀𝑖𝑍𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗))
113103, 112sylib 208 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑖𝑍𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗))
11489, 38syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝐷 ∈ (∞Met‘𝑋))
115 simplrl 762 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑔 ∈ (CauFil‘𝐷))
116114, 115, 42syl2anc 573 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑔 ∈ (Fil‘𝑋))
11794simpld 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑠:ℤ⟶𝑔)
11826, 1, 88, 89, 93, 102, 113iscmet3lem1 23307 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓 ∈ (Cau‘𝐷))
119 simprl 754 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
120118, 93, 119mp2d 49 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓 ∈ dom (⇝𝑡𝐽))
12126, 1, 88, 89, 93, 102, 113, 116, 117, 120iscmet3lem2 23308 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝐽 fLim 𝑔) ≠ ∅)
122121ex 397 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → (𝐽 fLim 𝑔) ≠ ∅))
123122exlimdv 2013 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → (𝐽 fLim 𝑔) ≠ ∅))
12487, 123syl5 34 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ((∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → (𝐽 fLim 𝑔) ≠ ∅))
125124expdimp 440 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → (∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)) → (𝐽 fLim 𝑔) ≠ ∅))
126125an32s 631 . . . . . . . . 9 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)) → (𝐽 fLim 𝑔) ≠ ∅))
12784, 126mpd 15 . . . . . . . 8 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (𝐽 fLim 𝑔) ≠ ∅)
128127expr 444 . . . . . . 7 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ((𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → (𝐽 fLim 𝑔) ≠ ∅))
129128exlimdv 2013 . . . . . 6 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → (∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → (𝐽 fLim 𝑔) ≠ ∅))
13023, 129mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝑔) ≠ ∅)
131130ralrimiva 3115 . . . 4 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → ∀𝑔 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑔) ≠ ∅)
1321iscmet 23300 . . . 4 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑔 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑔) ≠ ∅))
1336, 131, 132sylanbrc 572 . . 3 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → 𝐷 ∈ (CMet‘𝑋))
134133ex 397 . 2 (𝜑 → (∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) → 𝐷 ∈ (CMet‘𝑋)))
1354, 134impbid2 216 1 (𝜑 → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wal 1629   = wceq 1631  wex 1852  wcel 2145  wne 2943  wral 3061  wrex 3062  {crab 3065  Vcvv 3351  cin 3722  wss 3723  c0 4063   ciin 4656   class class class wbr 4787   I cid 5157  dom cdm 5250  wf 6026  cfv 6030  (class class class)co 6795  ωcom 7215  cen 8109  cdom 8110  Fincfn 8112  ficfi 8475  1c1 10142   < clt 10279   / cdiv 10889  cn 11225  2c2 11275  cz 11583  cuz 11892  +crp 12034  ...cfz 12532  cexp 13066  ∞Metcxmt 19945  Metcme 19946  MetOpencmopn 19950  𝑡clm 21250  Filcfil 21868   fLim cflim 21957  CauFilccfil 23268  Caucca 23269  CMetcms 23270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cc 9462  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-oadd 7720  df-omul 7721  df-er 7899  df-map 8014  df-pm 8015  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-fi 8476  df-sup 8507  df-inf 8508  df-oi 8574  df-card 8968  df-acn 8971  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-z 11584  df-uz 11893  df-q 11996  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ico 12385  df-fz 12533  df-fl 12800  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-rlim 14427  df-rest 16290  df-topgen 16311  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-top 20918  df-topon 20935  df-bases 20970  df-ntr 21044  df-nei 21122  df-lm 21253  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-cfil 23271  df-cau 23272  df-cmet 23273
This theorem is referenced by:  iscmet2  23310  iscmet3i  23328  heibor1  33940  rrncms  33963
  Copyright terms: Public domain W3C validator