| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | iscmet3.2 | . . . . 5
⊢ 𝐽 = (MetOpen‘𝐷) | 
| 2 | 1 | cmetcau 25324 | . . . 4
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → 𝑓 ∈ dom
(⇝𝑡‘𝐽)) | 
| 3 | 2 | a1d 25 | . . 3
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) | 
| 4 | 3 | ralrimiva 3145 | . 2
⊢ (𝐷 ∈ (CMet‘𝑋) → ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) | 
| 5 |  | iscmet3.4 | . . . . 5
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | 
| 6 | 5 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) → 𝐷 ∈ (Met‘𝑋)) | 
| 7 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → 𝑔 ∈ (CauFil‘𝐷)) | 
| 8 |  | 1rp 13039 | . . . . . . . . . . 11
⊢ 1 ∈
ℝ+ | 
| 9 |  | rphalfcl 13063 | . . . . . . . . . . 11
⊢ (1 ∈
ℝ+ → (1 / 2) ∈ ℝ+) | 
| 10 | 8, 9 | ax-mp 5 | . . . . . . . . . 10
⊢ (1 / 2)
∈ ℝ+ | 
| 11 |  | rpexpcl 14122 | . . . . . . . . . 10
⊢ (((1 / 2)
∈ ℝ+ ∧ 𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈
ℝ+) | 
| 12 | 10, 11 | mpan 690 | . . . . . . . . 9
⊢ (𝑘 ∈ ℤ → ((1 /
2)↑𝑘) ∈
ℝ+) | 
| 13 |  | cfili 25303 | . . . . . . . . 9
⊢ ((𝑔 ∈ (CauFil‘𝐷) ∧ ((1 / 2)↑𝑘) ∈ ℝ+)
→ ∃𝑡 ∈
𝑔 ∀𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) | 
| 14 | 7, 12, 13 | syl2an 596 | . . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) ∧ 𝑘 ∈ ℤ) → ∃𝑡 ∈ 𝑔 ∀𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) | 
| 15 | 14 | ralrimiva 3145 | . . . . . . 7
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ∀𝑘 ∈ ℤ ∃𝑡 ∈ 𝑔 ∀𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) | 
| 16 |  | vex 3483 | . . . . . . . 8
⊢ 𝑔 ∈ V | 
| 17 |  | znnen 16249 | . . . . . . . . 9
⊢ ℤ
≈ ℕ | 
| 18 |  | nnenom 14022 | . . . . . . . . 9
⊢ ℕ
≈ ω | 
| 19 | 17, 18 | entri 9049 | . . . . . . . 8
⊢ ℤ
≈ ω | 
| 20 |  | raleq 3322 | . . . . . . . . 9
⊢ (𝑡 = (𝑠‘𝑘) → (∀𝑣 ∈ 𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))) | 
| 21 | 20 | raleqbi1dv 3337 | . . . . . . . 8
⊢ (𝑡 = (𝑠‘𝑘) → (∀𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))) | 
| 22 | 16, 19, 21 | axcc4 10480 | . . . . . . 7
⊢
(∀𝑘 ∈
ℤ ∃𝑡 ∈
𝑔 ∀𝑢 ∈ 𝑡 ∀𝑣 ∈ 𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → ∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))) | 
| 23 | 15, 22 | syl 17 | . . . . . 6
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))) | 
| 24 |  | iscmet3.3 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 25 | 24 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → 𝑀 ∈ ℤ) | 
| 26 |  | iscmet3.1 | . . . . . . . . . . . 12
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 27 | 26 | uzenom 14006 | . . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → 𝑍 ≈
ω) | 
| 28 |  | endom 9020 | . . . . . . . . . . 11
⊢ (𝑍 ≈ ω → 𝑍 ≼
ω) | 
| 29 | 25, 27, 28 | 3syl 18 | . . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → 𝑍 ≼ ω) | 
| 30 |  | dfin5 3958 | . . . . . . . . . . . . . . 15
⊢ (( I
‘𝑋) ∩ ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) = {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)} | 
| 31 |  | fzn0 13579 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀...𝑘) ≠ ∅ ↔ 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 32 | 31 | biimpri 228 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑀...𝑘) ≠ ∅) | 
| 33 | 32, 26 | eleq2s 2858 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ 𝑍 → (𝑀...𝑘) ≠ ∅) | 
| 34 |  | metxmet 24345 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 35 | 5, 34 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | 
| 36 | 35 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 37 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔) → 𝑔 ∈ (CauFil‘𝐷)) | 
| 38 |  | cfilfil 25302 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑔 ∈ (CauFil‘𝐷)) → 𝑔 ∈ (Fil‘𝑋)) | 
| 39 | 36, 37, 38 | syl2an 596 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → 𝑔 ∈ (Fil‘𝑋)) | 
| 40 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → 𝑠:ℤ⟶𝑔) | 
| 41 |  | elfzelz 13565 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ (𝑀...𝑘) → 𝑛 ∈ ℤ) | 
| 42 |  | ffvelcdm 7100 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑠:ℤ⟶𝑔 ∧ 𝑛 ∈ ℤ) → (𝑠‘𝑛) ∈ 𝑔) | 
| 43 | 40, 41, 42 | syl2an 596 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑠‘𝑛) ∈ 𝑔) | 
| 44 |  | filelss 23861 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑔 ∈ (Fil‘𝑋) ∧ (𝑠‘𝑛) ∈ 𝑔) → (𝑠‘𝑛) ⊆ 𝑋) | 
| 45 | 39, 43, 44 | syl2an2r 685 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑠‘𝑛) ⊆ 𝑋) | 
| 46 | 45 | ralrimiva 3145 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋) | 
| 47 |  | r19.2z 4494 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀...𝑘) ≠ ∅ ∧ ∀𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋) → ∃𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋) | 
| 48 | 33, 46, 47 | syl2anr 597 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∃𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋) | 
| 49 |  | iinss 5055 | . . . . . . . . . . . . . . . . . 18
⊢
(∃𝑛 ∈
(𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋 → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋) | 
| 50 | 48, 49 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ 𝑋) | 
| 51 | 6 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → 𝐷 ∈ (Met‘𝑋)) | 
| 52 |  | elfvdm 6942 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ dom Met) | 
| 53 |  | fvi 6984 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ dom Met → ( I
‘𝑋) = 𝑋) | 
| 54 | 51, 52, 53 | 3syl 18 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ( I ‘𝑋) = 𝑋) | 
| 55 | 50, 54 | sseqtrrd 4020 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ ( I ‘𝑋)) | 
| 56 |  | sseqin2 4222 | . . . . . . . . . . . . . . . 16
⊢ (∩ 𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ⊆ ( I ‘𝑋) ↔ (( I ‘𝑋) ∩ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) = ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) | 
| 57 | 55, 56 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → (( I ‘𝑋) ∩ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) = ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) | 
| 58 | 30, 57 | eqtr3id 2790 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)} = ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) | 
| 59 | 39 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → 𝑔 ∈ (Fil‘𝑋)) | 
| 60 | 43 | ralrimiva 3145 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ 𝑔) | 
| 61 | 60 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ 𝑔) | 
| 62 | 33 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → (𝑀...𝑘) ≠ ∅) | 
| 63 |  | fzfid 14015 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → (𝑀...𝑘) ∈ Fin) | 
| 64 |  | iinfi 9458 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ (Fil‘𝑋) ∧ (∀𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ 𝑔 ∧ (𝑀...𝑘) ≠ ∅ ∧ (𝑀...𝑘) ∈ Fin)) → ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ (fi‘𝑔)) | 
| 65 | 59, 61, 62, 63, 64 | syl13anc 1373 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ (fi‘𝑔)) | 
| 66 |  | filfi 23868 | . . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ (Fil‘𝑋) → (fi‘𝑔) = 𝑔) | 
| 67 | 59, 66 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → (fi‘𝑔) = 𝑔) | 
| 68 | 65, 67 | eleqtrd 2842 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ 𝑔) | 
| 69 |  | fileln0 23859 | . . . . . . . . . . . . . . 15
⊢ ((𝑔 ∈ (Fil‘𝑋) ∧ ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ∈ 𝑔) → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ≠ ∅) | 
| 70 | 39, 68, 69 | syl2an2r 685 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ≠ ∅) | 
| 71 | 58, 70 | eqnetrd 3007 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)} ≠ ∅) | 
| 72 |  | rabn0 4388 | . . . . . . . . . . . . 13
⊢ ({𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)} ≠ ∅ ↔ ∃𝑥 ∈ ( I ‘𝑋)𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) | 
| 73 | 71, 72 | sylib 218 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘 ∈ 𝑍) → ∃𝑥 ∈ ( I ‘𝑋)𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) | 
| 74 | 73 | ralrimiva 3145 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑘 ∈ 𝑍 ∃𝑥 ∈ ( I ‘𝑋)𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) | 
| 75 | 74 | adantrrr 725 | . . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ∀𝑘 ∈ 𝑍 ∃𝑥 ∈ ( I ‘𝑋)𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) | 
| 76 |  | fvex 6918 | . . . . . . . . . . 11
⊢ ( I
‘𝑋) ∈
V | 
| 77 |  | eleq1 2828 | . . . . . . . . . . . 12
⊢ (𝑥 = (𝑓‘𝑘) → (𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ↔ (𝑓‘𝑘) ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛))) | 
| 78 |  | fvex 6918 | . . . . . . . . . . . . 13
⊢ (𝑓‘𝑘) ∈ V | 
| 79 |  | eliin 4995 | . . . . . . . . . . . . 13
⊢ ((𝑓‘𝑘) ∈ V → ((𝑓‘𝑘) ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) | 
| 80 | 78, 79 | ax-mp 5 | . . . . . . . . . . . 12
⊢ ((𝑓‘𝑘) ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)) | 
| 81 | 77, 80 | bitrdi 287 | . . . . . . . . . . 11
⊢ (𝑥 = (𝑓‘𝑘) → (𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) | 
| 82 | 76, 81 | axcc4dom 10482 | . . . . . . . . . 10
⊢ ((𝑍 ≼ ω ∧
∀𝑘 ∈ 𝑍 ∃𝑥 ∈ ( I ‘𝑋)𝑥 ∈ ∩
𝑛 ∈ (𝑀...𝑘)(𝑠‘𝑛)) → ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) | 
| 83 | 29, 75, 82 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) | 
| 84 |  | df-ral 3061 | . . . . . . . . . . . . 13
⊢
(∀𝑓 ∈
(Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)) ↔ ∀𝑓(𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)))) | 
| 85 |  | 19.29 1872 | . . . . . . . . . . . . 13
⊢
((∀𝑓(𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) → ∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) | 
| 86 | 84, 85 | sylanb 581 | . . . . . . . . . . . 12
⊢
((∀𝑓 ∈
(Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) → ∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) | 
| 87 | 24 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑀 ∈ ℤ) | 
| 88 | 5 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝐷 ∈ (Met‘𝑋)) | 
| 89 |  | simprrl 780 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑓:𝑍⟶( I ‘𝑋)) | 
| 90 |  | feq3 6717 | . . . . . . . . . . . . . . . . 17
⊢ (( I
‘𝑋) = 𝑋 → (𝑓:𝑍⟶( I ‘𝑋) ↔ 𝑓:𝑍⟶𝑋)) | 
| 91 | 88, 52, 53, 90 | 4syl 19 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → (𝑓:𝑍⟶( I ‘𝑋) ↔ 𝑓:𝑍⟶𝑋)) | 
| 92 | 89, 91 | mpbid 232 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑓:𝑍⟶𝑋) | 
| 93 |  | simplrr 777 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))) | 
| 94 | 93 | simprd 495 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) | 
| 95 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑖 → (𝑠‘𝑘) = (𝑠‘𝑖)) | 
| 96 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑖 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑖)) | 
| 97 | 96 | breq2d 5154 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑖 → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ (𝑢𝐷𝑣) < ((1 / 2)↑𝑖))) | 
| 98 | 95, 97 | raleqbidv 3345 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑖 → (∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑣 ∈ (𝑠‘𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖))) | 
| 99 | 95, 98 | raleqbidv 3345 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑖 → (∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑢 ∈ (𝑠‘𝑖)∀𝑣 ∈ (𝑠‘𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖))) | 
| 100 | 99 | cbvralvw 3236 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
ℤ ∀𝑢 ∈
(𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑖 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑖)∀𝑣 ∈ (𝑠‘𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖)) | 
| 101 | 94, 100 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → ∀𝑖 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑖)∀𝑣 ∈ (𝑠‘𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖)) | 
| 102 |  | simprrr 781 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)) | 
| 103 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑗 → (𝑠‘𝑛) = (𝑠‘𝑗)) | 
| 104 | 103 | eleq2d 2826 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑗 → ((𝑓‘𝑘) ∈ (𝑠‘𝑛) ↔ (𝑓‘𝑘) ∈ (𝑠‘𝑗))) | 
| 105 | 104 | cbvralvw 3236 | . . . . . . . . . . . . . . . . . 18
⊢
(∀𝑛 ∈
(𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛) ↔ ∀𝑗 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑗)) | 
| 106 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑖 → (𝑀...𝑘) = (𝑀...𝑖)) | 
| 107 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑖 → (𝑓‘𝑘) = (𝑓‘𝑖)) | 
| 108 | 107 | eleq1d 2825 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑖 → ((𝑓‘𝑘) ∈ (𝑠‘𝑗) ↔ (𝑓‘𝑖) ∈ (𝑠‘𝑗))) | 
| 109 | 106, 108 | raleqbidv 3345 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑗) ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝑓‘𝑖) ∈ (𝑠‘𝑗))) | 
| 110 | 105, 109 | bitrid 283 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑖 → (∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛) ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝑓‘𝑖) ∈ (𝑠‘𝑗))) | 
| 111 | 110 | cbvralvw 3236 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛) ↔ ∀𝑖 ∈ 𝑍 ∀𝑗 ∈ (𝑀...𝑖)(𝑓‘𝑖) ∈ (𝑠‘𝑗)) | 
| 112 | 102, 111 | sylib 218 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → ∀𝑖 ∈ 𝑍 ∀𝑗 ∈ (𝑀...𝑖)(𝑓‘𝑖) ∈ (𝑠‘𝑗)) | 
| 113 | 88, 34 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 114 |  | simplrl 776 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑔 ∈ (CauFil‘𝐷)) | 
| 115 | 113, 114,
38 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑔 ∈ (Fil‘𝑋)) | 
| 116 | 93 | simpld 494 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑠:ℤ⟶𝑔) | 
| 117 | 26, 1, 87, 88, 92, 101, 112 | iscmet3lem1 25326 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑓 ∈ (Cau‘𝐷)) | 
| 118 |  | simprl 770 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → (𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)))) | 
| 119 | 117, 92, 118 | mp2d 49 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → 𝑓 ∈ dom
(⇝𝑡‘𝐽)) | 
| 120 | 26, 1, 87, 88, 92, 101, 112, 115, 116, 119 | iscmet3lem2 25327 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)))) → (𝐽 fLim 𝑔) ≠ ∅) | 
| 121 | 120 | ex 412 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) → (𝐽 fLim 𝑔) ≠ ∅)) | 
| 122 | 121 | exlimdv 1932 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) → (𝐽 fLim 𝑔) ≠ ∅)) | 
| 123 | 86, 122 | syl5 34 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ((∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛))) → (𝐽 fLim 𝑔) ≠ ∅)) | 
| 124 | 123 | expdimp 452 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) → (∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)) → (𝐽 fLim 𝑔) ≠ ∅)) | 
| 125 | 124 | an32s 652 | . . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘 ∈ 𝑍 ∀𝑛 ∈ (𝑀...𝑘)(𝑓‘𝑘) ∈ (𝑠‘𝑛)) → (𝐽 fLim 𝑔) ≠ ∅)) | 
| 126 | 83, 125 | mpd 15 | . . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (𝐽 fLim 𝑔) ≠ ∅) | 
| 127 | 126 | expr 456 | . . . . . . 7
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ((𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → (𝐽 fLim 𝑔) ≠ ∅)) | 
| 128 | 127 | exlimdv 1932 | . . . . . 6
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → (∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠‘𝑘)∀𝑣 ∈ (𝑠‘𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → (𝐽 fLim 𝑔) ≠ ∅)) | 
| 129 | 23, 128 | mpd 15 | . . . . 5
⊢ (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝑔) ≠ ∅) | 
| 130 | 129 | ralrimiva 3145 | . . . 4
⊢ ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) → ∀𝑔 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑔) ≠ ∅) | 
| 131 | 1 | iscmet 25319 | . . . 4
⊢ (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑔 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑔) ≠ ∅)) | 
| 132 | 6, 130, 131 | sylanbrc 583 | . . 3
⊢ ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽))) → 𝐷 ∈ (CMet‘𝑋)) | 
| 133 | 132 | ex 412 | . 2
⊢ (𝜑 → (∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)) → 𝐷 ∈ (CMet‘𝑋))) | 
| 134 | 4, 133 | impbid2 226 | 1
⊢ (𝜑 → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍⟶𝑋 → 𝑓 ∈ dom
(⇝𝑡‘𝐽)))) |