MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3 Structured version   Visualization version   GIF version

Theorem iscmet3 25191
Description: The property "𝐷 is a complete metric" expressed in terms of functions on (or any other upper integer set). Thus, we only have to look at functions on , and not all possible Cauchy filters, to determine completeness. (The proof uses countable choice.) (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 5-May-2014.)
Hypotheses
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
iscmet3.2 𝐽 = (MetOpen‘𝐷)
iscmet3.3 (𝜑𝑀 ∈ ℤ)
iscmet3.4 (𝜑𝐷 ∈ (Met‘𝑋))
Assertion
Ref Expression
iscmet3 (𝜑 → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
Distinct variable groups:   𝐷,𝑓   𝑓,𝑋   𝑓,𝐽   𝑓,𝑍   𝑓,𝑀   𝜑,𝑓

Proof of Theorem iscmet3
Dummy variables 𝑔 𝑖 𝑗 𝑘 𝑛 𝑠 𝑡 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.2 . . . . 5 𝐽 = (MetOpen‘𝐷)
21cmetcau 25187 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → 𝑓 ∈ dom (⇝𝑡𝐽))
32a1d 25 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)))
43ralrimiva 3121 . 2 (𝐷 ∈ (CMet‘𝑋) → ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)))
5 iscmet3.4 . . . . 5 (𝜑𝐷 ∈ (Met‘𝑋))
65adantr 480 . . . 4 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → 𝐷 ∈ (Met‘𝑋))
7 simpr 484 . . . . . . . . 9 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → 𝑔 ∈ (CauFil‘𝐷))
8 1rp 12897 . . . . . . . . . . 11 1 ∈ ℝ+
9 rphalfcl 12922 . . . . . . . . . . 11 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
108, 9ax-mp 5 . . . . . . . . . 10 (1 / 2) ∈ ℝ+
11 rpexpcl 13987 . . . . . . . . . 10 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
1210, 11mpan 690 . . . . . . . . 9 (𝑘 ∈ ℤ → ((1 / 2)↑𝑘) ∈ ℝ+)
13 cfili 25166 . . . . . . . . 9 ((𝑔 ∈ (CauFil‘𝐷) ∧ ((1 / 2)↑𝑘) ∈ ℝ+) → ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
147, 12, 13syl2an 596 . . . . . . . 8 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) ∧ 𝑘 ∈ ℤ) → ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
1514ralrimiva 3121 . . . . . . 7 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ∀𝑘 ∈ ℤ ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
16 vex 3440 . . . . . . . 8 𝑔 ∈ V
17 znnen 16121 . . . . . . . . 9 ℤ ≈ ℕ
18 nnenom 13887 . . . . . . . . 9 ℕ ≈ ω
1917, 18entri 8933 . . . . . . . 8 ℤ ≈ ω
20 raleq 3286 . . . . . . . . 9 (𝑡 = (𝑠𝑘) → (∀𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
2120raleqbi1dv 3301 . . . . . . . 8 (𝑡 = (𝑠𝑘) → (∀𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
2216, 19, 21axcc4 10333 . . . . . . 7 (∀𝑘 ∈ ℤ ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → ∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
2315, 22syl 17 . . . . . 6 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
24 iscmet3.3 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
2524ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → 𝑀 ∈ ℤ)
26 iscmet3.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2726uzenom 13871 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑍 ≈ ω)
28 endom 8904 . . . . . . . . . . 11 (𝑍 ≈ ω → 𝑍 ≼ ω)
2925, 27, 283syl 18 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → 𝑍 ≼ ω)
30 dfin5 3911 . . . . . . . . . . . . . . 15 (( I ‘𝑋) ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) = {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)}
31 fzn0 13441 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀...𝑘) ≠ ∅ ↔ 𝑘 ∈ (ℤ𝑀))
3231biimpri 228 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑀) → (𝑀...𝑘) ≠ ∅)
3332, 26eleq2s 2846 . . . . . . . . . . . . . . . . . . 19 (𝑘𝑍 → (𝑀...𝑘) ≠ ∅)
34 metxmet 24220 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
355, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐷 ∈ (∞Met‘𝑋))
3635adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → 𝐷 ∈ (∞Met‘𝑋))
37 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔) → 𝑔 ∈ (CauFil‘𝐷))
38 cfilfil 25165 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑔 ∈ (CauFil‘𝐷)) → 𝑔 ∈ (Fil‘𝑋))
3936, 37, 38syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → 𝑔 ∈ (Fil‘𝑋))
40 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → 𝑠:ℤ⟶𝑔)
41 elfzelz 13427 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (𝑀...𝑘) → 𝑛 ∈ ℤ)
42 ffvelcdm 7015 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠:ℤ⟶𝑔𝑛 ∈ ℤ) → (𝑠𝑛) ∈ 𝑔)
4340, 41, 42syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑠𝑛) ∈ 𝑔)
44 filelss 23737 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔 ∈ (Fil‘𝑋) ∧ (𝑠𝑛) ∈ 𝑔) → (𝑠𝑛) ⊆ 𝑋)
4539, 43, 44syl2an2r 685 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑠𝑛) ⊆ 𝑋)
4645ralrimiva 3121 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
47 r19.2z 4446 . . . . . . . . . . . . . . . . . . 19 (((𝑀...𝑘) ≠ ∅ ∧ ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋) → ∃𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
4833, 46, 47syl2anr 597 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ∃𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
49 iinss 5005 . . . . . . . . . . . . . . . . . 18 (∃𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
5048, 49syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
516ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝐷 ∈ (Met‘𝑋))
52 elfvdm 6857 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ dom Met)
53 fvi 6899 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ dom Met → ( I ‘𝑋) = 𝑋)
5451, 52, 533syl 18 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ( I ‘𝑋) = 𝑋)
5550, 54sseqtrrd 3973 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ ( I ‘𝑋))
56 sseqin2 4174 . . . . . . . . . . . . . . . 16 ( 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ ( I ‘𝑋) ↔ (( I ‘𝑋) ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) = 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
5755, 56sylib 218 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (( I ‘𝑋) ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) = 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
5830, 57eqtr3id 2778 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)} = 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
5939adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑔 ∈ (Fil‘𝑋))
6043ralrimiva 3121 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔)
6160adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔)
6233adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (𝑀...𝑘) ≠ ∅)
63 fzfid 13880 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (𝑀...𝑘) ∈ Fin)
64 iinfi 9307 . . . . . . . . . . . . . . . . 17 ((𝑔 ∈ (Fil‘𝑋) ∧ (∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔 ∧ (𝑀...𝑘) ≠ ∅ ∧ (𝑀...𝑘) ∈ Fin)) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ (fi‘𝑔))
6559, 61, 62, 63, 64syl13anc 1374 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ (fi‘𝑔))
66 filfi 23744 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (Fil‘𝑋) → (fi‘𝑔) = 𝑔)
6759, 66syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (fi‘𝑔) = 𝑔)
6865, 67eleqtrd 2830 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔)
69 fileln0 23735 . . . . . . . . . . . . . . 15 ((𝑔 ∈ (Fil‘𝑋) ∧ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ≠ ∅)
7039, 68, 69syl2an2r 685 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ≠ ∅)
7158, 70eqnetrd 2992 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)} ≠ ∅)
72 rabn0 4340 . . . . . . . . . . . . 13 ({𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)} ≠ ∅ ↔ ∃𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
7371, 72sylib 218 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ∃𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
7473ralrimiva 3121 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑘𝑍𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
7574adantrrr 725 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ∀𝑘𝑍𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
76 fvex 6835 . . . . . . . . . . 11 ( I ‘𝑋) ∈ V
77 eleq1 2816 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑘) → (𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ (𝑓𝑘) ∈ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)))
78 fvex 6835 . . . . . . . . . . . . 13 (𝑓𝑘) ∈ V
79 eliin 4946 . . . . . . . . . . . . 13 ((𝑓𝑘) ∈ V → ((𝑓𝑘) ∈ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
8078, 79ax-mp 5 . . . . . . . . . . . 12 ((𝑓𝑘) ∈ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))
8177, 80bitrdi 287 . . . . . . . . . . 11 (𝑥 = (𝑓𝑘) → (𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
8276, 81axcc4dom 10335 . . . . . . . . . 10 ((𝑍 ≼ ω ∧ ∀𝑘𝑍𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) → ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
8329, 75, 82syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
84 df-ral 3045 . . . . . . . . . . . . 13 (∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) ↔ ∀𝑓(𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
85 19.29 1873 . . . . . . . . . . . . 13 ((∀𝑓(𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → ∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))))
8684, 85sylanb 581 . . . . . . . . . . . 12 ((∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → ∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))))
8724ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑀 ∈ ℤ)
885ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝐷 ∈ (Met‘𝑋))
89 simprrl 780 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓:𝑍⟶( I ‘𝑋))
90 feq3 6632 . . . . . . . . . . . . . . . . 17 (( I ‘𝑋) = 𝑋 → (𝑓:𝑍⟶( I ‘𝑋) ↔ 𝑓:𝑍𝑋))
9188, 52, 53, 904syl 19 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝑓:𝑍⟶( I ‘𝑋) ↔ 𝑓:𝑍𝑋))
9289, 91mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓:𝑍𝑋)
93 simplrr 777 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
9493simprd 495 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
95 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (𝑠𝑘) = (𝑠𝑖))
96 oveq2 7357 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑖))
9796breq2d 5104 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ (𝑢𝐷𝑣) < ((1 / 2)↑𝑖)))
9895, 97raleqbidv 3309 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖)))
9995, 98raleqbidv 3309 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑢 ∈ (𝑠𝑖)∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖)))
10099cbvralvw 3207 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑖 ∈ ℤ ∀𝑢 ∈ (𝑠𝑖)∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖))
10194, 100sylib 218 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑖 ∈ ℤ ∀𝑢 ∈ (𝑠𝑖)∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖))
102 simprrr 781 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))
103 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → (𝑠𝑛) = (𝑠𝑗))
104103eleq2d 2814 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → ((𝑓𝑘) ∈ (𝑠𝑛) ↔ (𝑓𝑘) ∈ (𝑠𝑗)))
105104cbvralvw 3207 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛) ↔ ∀𝑗 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑗))
106 oveq2 7357 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝑀...𝑘) = (𝑀...𝑖))
107 fveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝑓𝑘) = (𝑓𝑖))
108107eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝑓𝑘) ∈ (𝑠𝑗) ↔ (𝑓𝑖) ∈ (𝑠𝑗)))
109106, 108raleqbidv 3309 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (∀𝑗 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑗) ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗)))
110105, 109bitrid 283 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛) ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗)))
111110cbvralvw 3207 . . . . . . . . . . . . . . . 16 (∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛) ↔ ∀𝑖𝑍𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗))
112102, 111sylib 218 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑖𝑍𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗))
11388, 34syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝐷 ∈ (∞Met‘𝑋))
114 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑔 ∈ (CauFil‘𝐷))
115113, 114, 38syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑔 ∈ (Fil‘𝑋))
11693simpld 494 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑠:ℤ⟶𝑔)
11726, 1, 87, 88, 92, 101, 112iscmet3lem1 25189 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓 ∈ (Cau‘𝐷))
118 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
119117, 92, 118mp2d 49 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓 ∈ dom (⇝𝑡𝐽))
12026, 1, 87, 88, 92, 101, 112, 115, 116, 119iscmet3lem2 25190 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝐽 fLim 𝑔) ≠ ∅)
121120ex 412 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → (𝐽 fLim 𝑔) ≠ ∅))
122121exlimdv 1933 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → (𝐽 fLim 𝑔) ≠ ∅))
12386, 122syl5 34 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ((∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → (𝐽 fLim 𝑔) ≠ ∅))
124123expdimp 452 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → (∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)) → (𝐽 fLim 𝑔) ≠ ∅))
125124an32s 652 . . . . . . . . 9 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)) → (𝐽 fLim 𝑔) ≠ ∅))
12683, 125mpd 15 . . . . . . . 8 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (𝐽 fLim 𝑔) ≠ ∅)
127126expr 456 . . . . . . 7 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ((𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → (𝐽 fLim 𝑔) ≠ ∅))
128127exlimdv 1933 . . . . . 6 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → (∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → (𝐽 fLim 𝑔) ≠ ∅))
12923, 128mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝑔) ≠ ∅)
130129ralrimiva 3121 . . . 4 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → ∀𝑔 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑔) ≠ ∅)
1311iscmet 25182 . . . 4 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑔 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑔) ≠ ∅))
1326, 130, 131sylanbrc 583 . . 3 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → 𝐷 ∈ (CMet‘𝑋))
133132ex 412 . 2 (𝜑 → (∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) → 𝐷 ∈ (CMet‘𝑋)))
1344, 133impbid2 226 1 (𝜑 → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cin 3902  wss 3903  c0 4284   ciin 4942   class class class wbr 5092   I cid 5513  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  ωcom 7799  cen 8869  cdom 8870  Fincfn 8872  ficfi 9300  1c1 11010   < clt 11149   / cdiv 11777  cn 12128  2c2 12183  cz 12471  cuz 12735  +crp 12893  ...cfz 13410  cexp 13968  ∞Metcxmet 21246  Metcmet 21247  MetOpencmopn 21251  𝑡clm 23111  Filcfil 23730   fLim cflim 23819  CauFilccfil 25150  Cauccau 25151  CMetccmet 25152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-fz 13411  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-bases 22831  df-ntr 22905  df-nei 22983  df-lm 23114  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-cfil 25153  df-cau 25154  df-cmet 25155
This theorem is referenced by:  iscmet2  25192  iscmet3i  25210  heibor1  37794  rrncms  37817
  Copyright terms: Public domain W3C validator