MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3 Structured version   Visualization version   GIF version

Theorem iscmet3 24467
Description: The property "𝐷 is a complete metric" expressed in terms of functions on (or any other upper integer set). Thus, we only have to look at functions on , and not all possible Cauchy filters, to determine completeness. (The proof uses countable choice.) (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 5-May-2014.)
Hypotheses
Ref Expression
iscmet3.1 𝑍 = (ℤ𝑀)
iscmet3.2 𝐽 = (MetOpen‘𝐷)
iscmet3.3 (𝜑𝑀 ∈ ℤ)
iscmet3.4 (𝜑𝐷 ∈ (Met‘𝑋))
Assertion
Ref Expression
iscmet3 (𝜑 → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
Distinct variable groups:   𝐷,𝑓   𝑓,𝑋   𝑓,𝐽   𝑓,𝑍   𝑓,𝑀   𝜑,𝑓

Proof of Theorem iscmet3
Dummy variables 𝑔 𝑖 𝑗 𝑘 𝑛 𝑠 𝑡 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.2 . . . . 5 𝐽 = (MetOpen‘𝐷)
21cmetcau 24463 . . . 4 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → 𝑓 ∈ dom (⇝𝑡𝐽))
32a1d 25 . . 3 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝑓 ∈ (Cau‘𝐷)) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)))
43ralrimiva 3108 . 2 (𝐷 ∈ (CMet‘𝑋) → ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)))
5 iscmet3.4 . . . . 5 (𝜑𝐷 ∈ (Met‘𝑋))
65adantr 481 . . . 4 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → 𝐷 ∈ (Met‘𝑋))
7 simpr 485 . . . . . . . . 9 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → 𝑔 ∈ (CauFil‘𝐷))
8 1rp 12744 . . . . . . . . . . 11 1 ∈ ℝ+
9 rphalfcl 12767 . . . . . . . . . . 11 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
108, 9ax-mp 5 . . . . . . . . . 10 (1 / 2) ∈ ℝ+
11 rpexpcl 13811 . . . . . . . . . 10 (((1 / 2) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / 2)↑𝑘) ∈ ℝ+)
1210, 11mpan 687 . . . . . . . . 9 (𝑘 ∈ ℤ → ((1 / 2)↑𝑘) ∈ ℝ+)
13 cfili 24442 . . . . . . . . 9 ((𝑔 ∈ (CauFil‘𝐷) ∧ ((1 / 2)↑𝑘) ∈ ℝ+) → ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
147, 12, 13syl2an 596 . . . . . . . 8 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) ∧ 𝑘 ∈ ℤ) → ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
1514ralrimiva 3108 . . . . . . 7 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ∀𝑘 ∈ ℤ ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
16 vex 3433 . . . . . . . 8 𝑔 ∈ V
17 znnen 15931 . . . . . . . . 9 ℤ ≈ ℕ
18 nnenom 13710 . . . . . . . . 9 ℕ ≈ ω
1917, 18entri 8781 . . . . . . . 8 ℤ ≈ ω
20 raleq 3340 . . . . . . . . 9 (𝑡 = (𝑠𝑘) → (∀𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
2120raleqbi1dv 3338 . . . . . . . 8 (𝑡 = (𝑠𝑘) → (∀𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
2216, 19, 21axcc4 10205 . . . . . . 7 (∀𝑘 ∈ ℤ ∃𝑡𝑔𝑢𝑡𝑣𝑡 (𝑢𝐷𝑣) < ((1 / 2)↑𝑘) → ∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
2315, 22syl 17 . . . . . 6 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
24 iscmet3.3 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
2524ad2antrr 723 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → 𝑀 ∈ ℤ)
26 iscmet3.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2726uzenom 13694 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑍 ≈ ω)
28 endom 8754 . . . . . . . . . . 11 (𝑍 ≈ ω → 𝑍 ≼ ω)
2925, 27, 283syl 18 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → 𝑍 ≼ ω)
30 dfin5 3894 . . . . . . . . . . . . . . 15 (( I ‘𝑋) ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) = {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)}
31 fzn0 13280 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀...𝑘) ≠ ∅ ↔ 𝑘 ∈ (ℤ𝑀))
3231biimpri 227 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℤ𝑀) → (𝑀...𝑘) ≠ ∅)
3332, 26eleq2s 2857 . . . . . . . . . . . . . . . . . . 19 (𝑘𝑍 → (𝑀...𝑘) ≠ ∅)
34 metxmet 23497 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
355, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐷 ∈ (∞Met‘𝑋))
3635adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → 𝐷 ∈ (∞Met‘𝑋))
37 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔) → 𝑔 ∈ (CauFil‘𝐷))
38 cfilfil 24441 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑔 ∈ (CauFil‘𝐷)) → 𝑔 ∈ (Fil‘𝑋))
3936, 37, 38syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → 𝑔 ∈ (Fil‘𝑋))
40 simprr 770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → 𝑠:ℤ⟶𝑔)
41 elfzelz 13266 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ (𝑀...𝑘) → 𝑛 ∈ ℤ)
42 ffvelrn 6951 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠:ℤ⟶𝑔𝑛 ∈ ℤ) → (𝑠𝑛) ∈ 𝑔)
4340, 41, 42syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑠𝑛) ∈ 𝑔)
44 filelss 23013 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔 ∈ (Fil‘𝑋) ∧ (𝑠𝑛) ∈ 𝑔) → (𝑠𝑛) ⊆ 𝑋)
4539, 43, 44syl2an2r 682 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑛 ∈ (𝑀...𝑘)) → (𝑠𝑛) ⊆ 𝑋)
4645ralrimiva 3108 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
47 r19.2z 4425 . . . . . . . . . . . . . . . . . . 19 (((𝑀...𝑘) ≠ ∅ ∧ ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋) → ∃𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
4833, 46, 47syl2anr 597 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ∃𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
49 iinss 4985 . . . . . . . . . . . . . . . . . 18 (∃𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
5048, 49syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ 𝑋)
516ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝐷 ∈ (Met‘𝑋))
52 elfvdm 6798 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ (Met‘𝑋) → 𝑋 ∈ dom Met)
53 fvi 6836 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ dom Met → ( I ‘𝑋) = 𝑋)
5451, 52, 533syl 18 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ( I ‘𝑋) = 𝑋)
5550, 54sseqtrrd 3961 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ ( I ‘𝑋))
56 sseqin2 4149 . . . . . . . . . . . . . . . 16 ( 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ⊆ ( I ‘𝑋) ↔ (( I ‘𝑋) ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) = 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
5755, 56sylib 217 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (( I ‘𝑋) ∩ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) = 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
5830, 57eqtr3id 2792 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)} = 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
5939adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑔 ∈ (Fil‘𝑋))
6043ralrimiva 3108 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔)
6160adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔)
6233adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (𝑀...𝑘) ≠ ∅)
63 fzfid 13703 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (𝑀...𝑘) ∈ Fin)
64 iinfi 9163 . . . . . . . . . . . . . . . . 17 ((𝑔 ∈ (Fil‘𝑋) ∧ (∀𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔 ∧ (𝑀...𝑘) ≠ ∅ ∧ (𝑀...𝑘) ∈ Fin)) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ (fi‘𝑔))
6559, 61, 62, 63, 64syl13anc 1371 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ (fi‘𝑔))
66 filfi 23020 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (Fil‘𝑋) → (fi‘𝑔) = 𝑔)
6759, 66syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → (fi‘𝑔) = 𝑔)
6865, 67eleqtrd 2841 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔)
69 fileln0 23011 . . . . . . . . . . . . . . 15 ((𝑔 ∈ (Fil‘𝑋) ∧ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ∈ 𝑔) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ≠ ∅)
7039, 68, 69syl2an2r 682 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ≠ ∅)
7158, 70eqnetrd 3011 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → {𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)} ≠ ∅)
72 rabn0 4319 . . . . . . . . . . . . 13 ({𝑥 ∈ ( I ‘𝑋) ∣ 𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)} ≠ ∅ ↔ ∃𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
7371, 72sylib 217 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) ∧ 𝑘𝑍) → ∃𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
7473ralrimiva 3108 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ 𝑠:ℤ⟶𝑔)) → ∀𝑘𝑍𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
7574adantrrr 722 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ∀𝑘𝑍𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛))
76 fvex 6779 . . . . . . . . . . 11 ( I ‘𝑋) ∈ V
77 eleq1 2826 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑘) → (𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ (𝑓𝑘) ∈ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)))
78 fvex 6779 . . . . . . . . . . . . 13 (𝑓𝑘) ∈ V
79 eliin 4929 . . . . . . . . . . . . 13 ((𝑓𝑘) ∈ V → ((𝑓𝑘) ∈ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
8078, 79ax-mp 5 . . . . . . . . . . . 12 ((𝑓𝑘) ∈ 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))
8177, 80bitrdi 287 . . . . . . . . . . 11 (𝑥 = (𝑓𝑘) → (𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛) ↔ ∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
8276, 81axcc4dom 10207 . . . . . . . . . 10 ((𝑍 ≼ ω ∧ ∀𝑘𝑍𝑥 ∈ ( I ‘𝑋)𝑥 𝑛 ∈ (𝑀...𝑘)(𝑠𝑛)) → ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
8329, 75, 82syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))
84 df-ral 3069 . . . . . . . . . . . . 13 (∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) ↔ ∀𝑓(𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
85 19.29 1876 . . . . . . . . . . . . 13 ((∀𝑓(𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → ∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))))
8684, 85sylanb 581 . . . . . . . . . . . 12 ((∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → ∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))))
8724ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑀 ∈ ℤ)
885ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝐷 ∈ (Met‘𝑋))
89 simprrl 778 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓:𝑍⟶( I ‘𝑋))
90 feq3 6575 . . . . . . . . . . . . . . . . 17 (( I ‘𝑋) = 𝑋 → (𝑓:𝑍⟶( I ‘𝑋) ↔ 𝑓:𝑍𝑋))
9188, 52, 53, 904syl 19 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝑓:𝑍⟶( I ‘𝑋) ↔ 𝑓:𝑍𝑋))
9289, 91mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓:𝑍𝑋)
93 simplrr 775 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))
9493simprd 496 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘))
95 fveq2 6766 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (𝑠𝑘) = (𝑠𝑖))
96 oveq2 7275 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((1 / 2)↑𝑘) = ((1 / 2)↑𝑖))
9796breq2d 5085 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ (𝑢𝐷𝑣) < ((1 / 2)↑𝑖)))
9895, 97raleqbidv 3334 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖)))
9995, 98raleqbidv 3334 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑢 ∈ (𝑠𝑖)∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖)))
10099cbvralvw 3380 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘) ↔ ∀𝑖 ∈ ℤ ∀𝑢 ∈ (𝑠𝑖)∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖))
10194, 100sylib 217 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑖 ∈ ℤ ∀𝑢 ∈ (𝑠𝑖)∀𝑣 ∈ (𝑠𝑖)(𝑢𝐷𝑣) < ((1 / 2)↑𝑖))
102 simprrr 779 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))
103 fveq2 6766 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑗 → (𝑠𝑛) = (𝑠𝑗))
104103eleq2d 2824 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → ((𝑓𝑘) ∈ (𝑠𝑛) ↔ (𝑓𝑘) ∈ (𝑠𝑗)))
105104cbvralvw 3380 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛) ↔ ∀𝑗 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑗))
106 oveq2 7275 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝑀...𝑘) = (𝑀...𝑖))
107 fveq2 6766 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝑓𝑘) = (𝑓𝑖))
108107eleq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝑓𝑘) ∈ (𝑠𝑗) ↔ (𝑓𝑖) ∈ (𝑠𝑗)))
109106, 108raleqbidv 3334 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (∀𝑗 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑗) ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗)))
110105, 109syl5bb 283 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (∀𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛) ↔ ∀𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗)))
111110cbvralvw 3380 . . . . . . . . . . . . . . . 16 (∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛) ↔ ∀𝑖𝑍𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗))
112102, 111sylib 217 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → ∀𝑖𝑍𝑗 ∈ (𝑀...𝑖)(𝑓𝑖) ∈ (𝑠𝑗))
11388, 34syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝐷 ∈ (∞Met‘𝑋))
114 simplrl 774 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑔 ∈ (CauFil‘𝐷))
115113, 114, 38syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑔 ∈ (Fil‘𝑋))
11693simpld 495 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑠:ℤ⟶𝑔)
11726, 1, 87, 88, 92, 101, 112iscmet3lem1 24465 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓 ∈ (Cau‘𝐷))
118 simprl 768 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
119117, 92, 118mp2d 49 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → 𝑓 ∈ dom (⇝𝑡𝐽))
12026, 1, 87, 88, 92, 101, 112, 115, 116, 119iscmet3lem2 24466 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)))) → (𝐽 fLim 𝑔) ≠ ∅)
121120ex 413 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → (𝐽 fLim 𝑔) ≠ ∅))
122121exlimdv 1936 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (∃𝑓((𝑓 ∈ (Cau‘𝐷) → (𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → (𝐽 fLim 𝑔) ≠ ∅))
12386, 122syl5 34 . . . . . . . . . . 11 ((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → ((∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) ∧ ∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛))) → (𝐽 fLim 𝑔) ≠ ∅))
124123expdimp 453 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → (∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)) → (𝐽 fLim 𝑔) ≠ ∅))
125124an32s 649 . . . . . . . . 9 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (∃𝑓(𝑓:𝑍⟶( I ‘𝑋) ∧ ∀𝑘𝑍𝑛 ∈ (𝑀...𝑘)(𝑓𝑘) ∈ (𝑠𝑛)) → (𝐽 fLim 𝑔) ≠ ∅))
12683, 125mpd 15 . . . . . . . 8 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ (𝑔 ∈ (CauFil‘𝐷) ∧ (𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)))) → (𝐽 fLim 𝑔) ≠ ∅)
127126expr 457 . . . . . . 7 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → ((𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → (𝐽 fLim 𝑔) ≠ ∅))
128127exlimdv 1936 . . . . . 6 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → (∃𝑠(𝑠:ℤ⟶𝑔 ∧ ∀𝑘 ∈ ℤ ∀𝑢 ∈ (𝑠𝑘)∀𝑣 ∈ (𝑠𝑘)(𝑢𝐷𝑣) < ((1 / 2)↑𝑘)) → (𝐽 fLim 𝑔) ≠ ∅))
12923, 128mpd 15 . . . . 5 (((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) ∧ 𝑔 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝑔) ≠ ∅)
130129ralrimiva 3108 . . . 4 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → ∀𝑔 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑔) ≠ ∅)
1311iscmet 24458 . . . 4 (𝐷 ∈ (CMet‘𝑋) ↔ (𝐷 ∈ (Met‘𝑋) ∧ ∀𝑔 ∈ (CauFil‘𝐷)(𝐽 fLim 𝑔) ≠ ∅))
1326, 130, 131sylanbrc 583 . . 3 ((𝜑 ∧ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))) → 𝐷 ∈ (CMet‘𝑋))
133132ex 413 . 2 (𝜑 → (∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽)) → 𝐷 ∈ (CMet‘𝑋)))
1344, 133impbid2 225 1 (𝜑 → (𝐷 ∈ (CMet‘𝑋) ↔ ∀𝑓 ∈ (Cau‘𝐷)(𝑓:𝑍𝑋𝑓 ∈ dom (⇝𝑡𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3429  cin 3885  wss 3886  c0 4256   ciin 4925   class class class wbr 5073   I cid 5483  dom cdm 5584  wf 6422  cfv 6426  (class class class)co 7267  ωcom 7702  cen 8717  cdom 8718  Fincfn 8720  ficfi 9156  1c1 10882   < clt 11019   / cdiv 11642  cn 11983  2c2 12038  cz 12329  cuz 12592  +crp 12740  ...cfz 13249  cexp 13792  ∞Metcxmet 20592  Metcmet 20593  MetOpencmopn 20597  𝑡clm 22387  Filcfil 23006   fLim cflim 23095  CauFilccfil 24426  Cauccau 24427  CMetccmet 24428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-inf2 9386  ax-cc 10201  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-oadd 8288  df-omul 8289  df-er 8485  df-map 8604  df-pm 8605  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fi 9157  df-sup 9188  df-inf 9189  df-oi 9256  df-card 9707  df-acn 9710  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-n0 12244  df-z 12330  df-uz 12593  df-q 12699  df-rp 12741  df-xneg 12858  df-xadd 12859  df-xmul 12860  df-ico 13095  df-fz 13250  df-fl 13522  df-seq 13732  df-exp 13793  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-clim 15207  df-rlim 15208  df-rest 17143  df-topgen 17164  df-psmet 20599  df-xmet 20600  df-met 20601  df-bl 20602  df-mopn 20603  df-fbas 20604  df-fg 20605  df-top 22053  df-topon 22070  df-bases 22106  df-ntr 22181  df-nei 22259  df-lm 22390  df-fil 23007  df-fm 23099  df-flim 23100  df-flf 23101  df-cfil 24429  df-cau 24430  df-cmet 24431
This theorem is referenced by:  iscmet2  24468  iscmet3i  24486  heibor1  35976  rrncms  35999
  Copyright terms: Public domain W3C validator