Step | Hyp | Ref
| Expression |
1 | | bnj849.10 |
. 2
⊢ (𝜏 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
2 | | bnj849.1 |
. . . 4
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
3 | | bnj849.2 |
. . . 4
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
4 | | bnj849.3 |
. . . 4
⊢ 𝐷 = (ω ∖
{∅}) |
5 | | bnj849.5 |
. . . 4
⊢ (𝜒 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷)) |
6 | | bnj849.6 |
. . . 4
⊢ (𝜃 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
7 | 2, 3, 4, 5, 6 | bnj865 32803 |
. . 3
⊢
∃𝑤∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃) |
8 | | bnj849.4 |
. . . . . . . 8
⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
9 | | bnj849.7 |
. . . . . . . 8
⊢ (𝜑′ ↔ [𝑔 / 𝑓]𝜑) |
10 | | bnj849.8 |
. . . . . . . 8
⊢ (𝜓′ ↔ [𝑔 / 𝑓]𝜓) |
11 | 8, 9, 10 | bnj873 32804 |
. . . . . . 7
⊢ 𝐵 = {𝑔 ∣ ∃𝑛 ∈ 𝐷 (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)} |
12 | | df-rex 3069 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
𝐷 (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′) ↔ ∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) |
13 | | 19.29 1877 |
. . . . . . . . . . 11
⊢
((∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ ∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) → ∃𝑛((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)))) |
14 | | an12 641 |
. . . . . . . . . . . . 13
⊢ (((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) ↔ (𝑛 ∈ 𝐷 ∧ ((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)))) |
15 | | df-3an 1087 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷)) |
16 | 1 | anbi1i 623 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜏 ∧ 𝑛 ∈ 𝐷) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷)) |
17 | 15, 5, 16 | 3bitr4i 302 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 ↔ (𝜏 ∧ 𝑛 ∈ 𝐷)) |
18 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → 𝜒) |
19 | | bnj849.9 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜃′ ↔ [𝑔 / 𝑓]𝜃) |
20 | 6, 9, 10, 19 | bnj581 32788 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜃′ ↔ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) |
21 | 19, 20 | bitr3i 276 |
. . . . . . . . . . . . . . . . . . 19
⊢
([𝑔 / 𝑓]𝜃 ↔ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) |
22 | 2, 3, 4, 5, 6 | bnj864 32802 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → ∃!𝑓𝜃) |
23 | | df-rex 3069 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑓 ∈
𝑤 𝜃 ↔ ∃𝑓(𝑓 ∈ 𝑤 ∧ 𝜃)) |
24 | | exancom 1865 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑓(𝑓 ∈ 𝑤 ∧ 𝜃) ↔ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) |
25 | 23, 24 | sylbb 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑓 ∈
𝑤 𝜃 → ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) |
26 | | nfeu1 2588 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑓∃!𝑓𝜃 |
27 | | nfe1 2149 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑓∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤) |
28 | 26, 27 | nfan 1903 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑓(∃!𝑓𝜃 ∧ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) |
29 | | nfsbc1v 3731 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑓[𝑔 / 𝑓]𝜃 |
30 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑓 𝑔 ∈ 𝑤 |
31 | 29, 30 | nfim 1900 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑓([𝑔 / 𝑓]𝜃 → 𝑔 ∈ 𝑤) |
32 | 28, 31 | nfim 1900 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑓((∃!𝑓𝜃 ∧ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) → ([𝑔 / 𝑓]𝜃 → 𝑔 ∈ 𝑤)) |
33 | | sbceq1a 3722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑔 → (𝜃 ↔ [𝑔 / 𝑓]𝜃)) |
34 | | elequ1 2115 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝑤 ↔ 𝑔 ∈ 𝑤)) |
35 | 33, 34 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = 𝑔 → ((𝜃 → 𝑓 ∈ 𝑤) ↔ ([𝑔 / 𝑓]𝜃 → 𝑔 ∈ 𝑤))) |
36 | 35 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝑔 → (((∃!𝑓𝜃 ∧ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) → (𝜃 → 𝑓 ∈ 𝑤)) ↔ ((∃!𝑓𝜃 ∧ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) → ([𝑔 / 𝑓]𝜃 → 𝑔 ∈ 𝑤)))) |
37 | | eupick 2635 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((∃!𝑓𝜃 ∧ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) → (𝜃 → 𝑓 ∈ 𝑤)) |
38 | 32, 36, 37 | chvarfv 2236 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∃!𝑓𝜃 ∧ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) → ([𝑔 / 𝑓]𝜃 → 𝑔 ∈ 𝑤)) |
39 | 22, 25, 38 | syl2an 595 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ ∃𝑓 ∈ 𝑤 𝜃) → ([𝑔 / 𝑓]𝜃 → 𝑔 ∈ 𝑤)) |
40 | 21, 39 | syl5bir 242 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜒 ∧ ∃𝑓 ∈ 𝑤 𝜃) → ((𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′) → 𝑔 ∈ 𝑤)) |
41 | 40 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (∃𝑓 ∈ 𝑤 𝜃 → ((𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′) → 𝑔 ∈ 𝑤))) |
42 | 18, 41 | embantd 59 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → ((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) → ((𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′) → 𝑔 ∈ 𝑤))) |
43 | 42 | impd 410 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) → 𝑔 ∈ 𝑤)) |
44 | 17, 43 | sylbir 234 |
. . . . . . . . . . . . . 14
⊢ ((𝜏 ∧ 𝑛 ∈ 𝐷) → (((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) → 𝑔 ∈ 𝑤)) |
45 | 44 | expimpd 453 |
. . . . . . . . . . . . 13
⊢ (𝜏 → ((𝑛 ∈ 𝐷 ∧ ((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) → 𝑔 ∈ 𝑤)) |
46 | 14, 45 | syl5bi 241 |
. . . . . . . . . . . 12
⊢ (𝜏 → (((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) → 𝑔 ∈ 𝑤)) |
47 | 46 | exlimdv 1937 |
. . . . . . . . . . 11
⊢ (𝜏 → (∃𝑛((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) → 𝑔 ∈ 𝑤)) |
48 | 13, 47 | syl5 34 |
. . . . . . . . . 10
⊢ (𝜏 → ((∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ ∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) → 𝑔 ∈ 𝑤)) |
49 | 48 | expdimp 452 |
. . . . . . . . 9
⊢ ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃)) → (∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) → 𝑔 ∈ 𝑤)) |
50 | 12, 49 | syl5bi 241 |
. . . . . . . 8
⊢ ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃)) → (∃𝑛 ∈ 𝐷 (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′) → 𝑔 ∈ 𝑤)) |
51 | 50 | abssdv 3998 |
. . . . . . 7
⊢ ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃)) → {𝑔 ∣ ∃𝑛 ∈ 𝐷 (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)} ⊆ 𝑤) |
52 | 11, 51 | eqsstrid 3965 |
. . . . . 6
⊢ ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃)) → 𝐵 ⊆ 𝑤) |
53 | | vex 3426 |
. . . . . . 7
⊢ 𝑤 ∈ V |
54 | 53 | ssex 5240 |
. . . . . 6
⊢ (𝐵 ⊆ 𝑤 → 𝐵 ∈ V) |
55 | 52, 54 | syl 17 |
. . . . 5
⊢ ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃)) → 𝐵 ∈ V) |
56 | 55 | ex 412 |
. . . 4
⊢ (𝜏 → (∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃) → 𝐵 ∈ V)) |
57 | 56 | exlimdv 1937 |
. . 3
⊢ (𝜏 → (∃𝑤∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃) → 𝐵 ∈ V)) |
58 | 7, 57 | mpi 20 |
. 2
⊢ (𝜏 → 𝐵 ∈ V) |
59 | 1, 58 | sylbir 234 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐵 ∈ V) |