Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj849 Structured version   Visualization version   GIF version

Theorem bnj849 32410
Description: Technical lemma for bnj69 32495. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj849.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj849.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj849.3 𝐷 = (ω ∖ {∅})
bnj849.4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj849.5 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
bnj849.6 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
bnj849.7 (𝜑′[𝑔 / 𝑓]𝜑)
bnj849.8 (𝜓′[𝑔 / 𝑓]𝜓)
bnj849.9 (𝜃′[𝑔 / 𝑓]𝜃)
bnj849.10 (𝜏 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
Assertion
Ref Expression
bnj849 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ∈ V)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐵,𝑔   𝐷,𝑓,𝑔,𝑛   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑛   𝜒,𝑓,𝑔   𝜑,𝑔   𝜓,𝑔   𝜏,𝑔,𝑛   𝜃,𝑔
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝜒(𝑦,𝑖,𝑛)   𝜃(𝑦,𝑓,𝑖,𝑛)   𝜏(𝑦,𝑓,𝑖)   𝐴(𝑔)   𝐵(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦)   𝑅(𝑔)   𝑋(𝑦,𝑔,𝑖)   𝜑′(𝑦,𝑓,𝑔,𝑖,𝑛)   𝜓′(𝑦,𝑓,𝑔,𝑖,𝑛)   𝜃′(𝑦,𝑓,𝑔,𝑖,𝑛)

Proof of Theorem bnj849
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj849.10 . 2 (𝜏 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
2 bnj849.1 . . . 4 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
3 bnj849.2 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
4 bnj849.3 . . . 4 𝐷 = (ω ∖ {∅})
5 bnj849.5 . . . 4 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
6 bnj849.6 . . . 4 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
72, 3, 4, 5, 6bnj865 32408 . . 3 𝑤𝑛(𝜒 → ∃𝑓𝑤 𝜃)
8 bnj849.4 . . . . . . . 8 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
9 bnj849.7 . . . . . . . 8 (𝜑′[𝑔 / 𝑓]𝜑)
10 bnj849.8 . . . . . . . 8 (𝜓′[𝑔 / 𝑓]𝜓)
118, 9, 10bnj873 32409 . . . . . . 7 𝐵 = {𝑔 ∣ ∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′)}
12 df-rex 3074 . . . . . . . . 9 (∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′) ↔ ∃𝑛(𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′)))
13 19.29 1875 . . . . . . . . . . 11 ((∀𝑛(𝜒 → ∃𝑓𝑤 𝜃) ∧ ∃𝑛(𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → ∃𝑛((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))))
14 an12 645 . . . . . . . . . . . . 13 (((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) ↔ (𝑛𝐷 ∧ ((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑔 Fn 𝑛𝜑′𝜓′))))
15 df-3an 1087 . . . . . . . . . . . . . . . 16 ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷))
161anbi1i 627 . . . . . . . . . . . . . . . 16 ((𝜏𝑛𝐷) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷))
1715, 5, 163bitr4i 307 . . . . . . . . . . . . . . 15 (𝜒 ↔ (𝜏𝑛𝐷))
18 id 22 . . . . . . . . . . . . . . . . 17 (𝜒𝜒)
19 bnj849.9 . . . . . . . . . . . . . . . . . . . 20 (𝜃′[𝑔 / 𝑓]𝜃)
206, 9, 10, 19bnj581 32393 . . . . . . . . . . . . . . . . . . . 20 (𝜃′ ↔ (𝑔 Fn 𝑛𝜑′𝜓′))
2119, 20bitr3i 280 . . . . . . . . . . . . . . . . . . 19 ([𝑔 / 𝑓]𝜃 ↔ (𝑔 Fn 𝑛𝜑′𝜓′))
222, 3, 4, 5, 6bnj864 32407 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∃!𝑓𝜃)
23 df-rex 3074 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑓𝑤 𝜃 ↔ ∃𝑓(𝑓𝑤𝜃))
24 exancom 1863 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑓(𝑓𝑤𝜃) ↔ ∃𝑓(𝜃𝑓𝑤))
2523, 24sylbb 222 . . . . . . . . . . . . . . . . . . . 20 (∃𝑓𝑤 𝜃 → ∃𝑓(𝜃𝑓𝑤))
26 nfeu1 2609 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓∃!𝑓𝜃
27 nfe1 2152 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓𝑓(𝜃𝑓𝑤)
2826, 27nfan 1901 . . . . . . . . . . . . . . . . . . . . . 22 𝑓(∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤))
29 nfsbc1v 3713 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓[𝑔 / 𝑓]𝜃
30 nfv 1916 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓 𝑔𝑤
3129, 30nfim 1898 . . . . . . . . . . . . . . . . . . . . . 22 𝑓([𝑔 / 𝑓]𝜃𝑔𝑤)
3228, 31nfim 1898 . . . . . . . . . . . . . . . . . . . . 21 𝑓((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → ([𝑔 / 𝑓]𝜃𝑔𝑤))
33 sbceq1a 3704 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (𝜃[𝑔 / 𝑓]𝜃))
34 elequ1 2119 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (𝑓𝑤𝑔𝑤))
3533, 34imbi12d 349 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑔 → ((𝜃𝑓𝑤) ↔ ([𝑔 / 𝑓]𝜃𝑔𝑤)))
3635imbi2d 345 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → (((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → (𝜃𝑓𝑤)) ↔ ((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → ([𝑔 / 𝑓]𝜃𝑔𝑤))))
37 eupick 2655 . . . . . . . . . . . . . . . . . . . . 21 ((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → (𝜃𝑓𝑤))
3832, 36, 37chvarfv 2241 . . . . . . . . . . . . . . . . . . . 20 ((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → ([𝑔 / 𝑓]𝜃𝑔𝑤))
3922, 25, 38syl2an 599 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ ∃𝑓𝑤 𝜃) → ([𝑔 / 𝑓]𝜃𝑔𝑤))
4021, 39syl5bir 246 . . . . . . . . . . . . . . . . . 18 ((𝜒 ∧ ∃𝑓𝑤 𝜃) → ((𝑔 Fn 𝑛𝜑′𝜓′) → 𝑔𝑤))
4140ex 417 . . . . . . . . . . . . . . . . 17 (𝜒 → (∃𝑓𝑤 𝜃 → ((𝑔 Fn 𝑛𝜑′𝜓′) → 𝑔𝑤)))
4218, 41embantd 59 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝜒 → ∃𝑓𝑤 𝜃) → ((𝑔 Fn 𝑛𝜑′𝜓′) → 𝑔𝑤)))
4342impd 415 . . . . . . . . . . . . . . 15 (𝜒 → (((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑔 Fn 𝑛𝜑′𝜓′)) → 𝑔𝑤))
4417, 43sylbir 238 . . . . . . . . . . . . . 14 ((𝜏𝑛𝐷) → (((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑔 Fn 𝑛𝜑′𝜓′)) → 𝑔𝑤))
4544expimpd 458 . . . . . . . . . . . . 13 (𝜏 → ((𝑛𝐷 ∧ ((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → 𝑔𝑤))
4614, 45syl5bi 245 . . . . . . . . . . . 12 (𝜏 → (((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → 𝑔𝑤))
4746exlimdv 1935 . . . . . . . . . . 11 (𝜏 → (∃𝑛((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → 𝑔𝑤))
4813, 47syl5 34 . . . . . . . . . 10 (𝜏 → ((∀𝑛(𝜒 → ∃𝑓𝑤 𝜃) ∧ ∃𝑛(𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → 𝑔𝑤))
4948expdimp 457 . . . . . . . . 9 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → (∃𝑛(𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′)) → 𝑔𝑤))
5012, 49syl5bi 245 . . . . . . . 8 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → (∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′) → 𝑔𝑤))
5150abssdv 3969 . . . . . . 7 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → {𝑔 ∣ ∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′)} ⊆ 𝑤)
5211, 51eqsstrid 3936 . . . . . 6 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → 𝐵𝑤)
53 vex 3411 . . . . . . 7 𝑤 ∈ V
5453ssex 5184 . . . . . 6 (𝐵𝑤𝐵 ∈ V)
5552, 54syl 17 . . . . 5 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → 𝐵 ∈ V)
5655ex 417 . . . 4 (𝜏 → (∀𝑛(𝜒 → ∃𝑓𝑤 𝜃) → 𝐵 ∈ V))
5756exlimdv 1935 . . 3 (𝜏 → (∃𝑤𝑛(𝜒 → ∃𝑓𝑤 𝜃) → 𝐵 ∈ V))
587, 57mpi 20 . 2 (𝜏𝐵 ∈ V)
591, 58sylbir 238 1 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085  wal 1537   = wceq 1539  wex 1782  wcel 2112  ∃!weu 2588  {cab 2736  wral 3068  wrex 3069  Vcvv 3407  [wsbc 3693  cdif 3851  wss 3854  c0 4221  {csn 4515   ciun 4876  suc csuc 6164   Fn wfn 6323  cfv 6328  ωcom 7572   predc-bnj14 32171   FrSe w-bnj15 32175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-reg 9074  ax-inf2 9122
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-om 7573  df-1o 8105  df-bnj17 32170  df-bnj14 32172  df-bnj13 32174  df-bnj15 32176
This theorem is referenced by:  bnj893  32413
  Copyright terms: Public domain W3C validator