| Step | Hyp | Ref
| Expression |
| 1 | | bnj849.10 |
. 2
⊢ (𝜏 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
| 2 | | bnj849.1 |
. . . 4
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 3 | | bnj849.2 |
. . . 4
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 4 | | bnj849.3 |
. . . 4
⊢ 𝐷 = (ω ∖
{∅}) |
| 5 | | bnj849.5 |
. . . 4
⊢ (𝜒 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷)) |
| 6 | | bnj849.6 |
. . . 4
⊢ (𝜃 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 7 | 2, 3, 4, 5, 6 | bnj865 34938 |
. . 3
⊢
∃𝑤∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃) |
| 8 | | bnj849.4 |
. . . . . . . 8
⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
| 9 | | bnj849.7 |
. . . . . . . 8
⊢ (𝜑′ ↔ [𝑔 / 𝑓]𝜑) |
| 10 | | bnj849.8 |
. . . . . . . 8
⊢ (𝜓′ ↔ [𝑔 / 𝑓]𝜓) |
| 11 | 8, 9, 10 | bnj873 34939 |
. . . . . . 7
⊢ 𝐵 = {𝑔 ∣ ∃𝑛 ∈ 𝐷 (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)} |
| 12 | | df-rex 3070 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
𝐷 (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′) ↔ ∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) |
| 13 | | 19.29 1872 |
. . . . . . . . . . 11
⊢
((∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ ∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) → ∃𝑛((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)))) |
| 14 | | an12 645 |
. . . . . . . . . . . . 13
⊢ (((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) ↔ (𝑛 ∈ 𝐷 ∧ ((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)))) |
| 15 | | df-3an 1088 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ 𝐷) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷)) |
| 16 | 1 | anbi1i 624 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜏 ∧ 𝑛 ∈ 𝐷) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑛 ∈ 𝐷)) |
| 17 | 15, 5, 16 | 3bitr4i 303 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 ↔ (𝜏 ∧ 𝑛 ∈ 𝐷)) |
| 18 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → 𝜒) |
| 19 | | bnj849.9 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜃′ ↔ [𝑔 / 𝑓]𝜃) |
| 20 | 6, 9, 10, 19 | bnj581 34923 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜃′ ↔ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) |
| 21 | 19, 20 | bitr3i 277 |
. . . . . . . . . . . . . . . . . . 19
⊢
([𝑔 / 𝑓]𝜃 ↔ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) |
| 22 | 2, 3, 4, 5, 6 | bnj864 34937 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → ∃!𝑓𝜃) |
| 23 | | df-rex 3070 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑓 ∈
𝑤 𝜃 ↔ ∃𝑓(𝑓 ∈ 𝑤 ∧ 𝜃)) |
| 24 | | exancom 1860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑓(𝑓 ∈ 𝑤 ∧ 𝜃) ↔ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) |
| 25 | 23, 24 | sylbb 219 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑓 ∈
𝑤 𝜃 → ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) |
| 26 | | nfeu1 2587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑓∃!𝑓𝜃 |
| 27 | | nfe1 2149 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑓∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤) |
| 28 | 26, 27 | nfan 1898 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑓(∃!𝑓𝜃 ∧ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) |
| 29 | | nfsbc1v 3807 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑓[𝑔 / 𝑓]𝜃 |
| 30 | | nfv 1913 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑓 𝑔 ∈ 𝑤 |
| 31 | 29, 30 | nfim 1895 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑓([𝑔 / 𝑓]𝜃 → 𝑔 ∈ 𝑤) |
| 32 | 28, 31 | nfim 1895 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑓((∃!𝑓𝜃 ∧ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) → ([𝑔 / 𝑓]𝜃 → 𝑔 ∈ 𝑤)) |
| 33 | | sbceq1a 3798 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑔 → (𝜃 ↔ [𝑔 / 𝑓]𝜃)) |
| 34 | | elequ1 2114 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝑤 ↔ 𝑔 ∈ 𝑤)) |
| 35 | 33, 34 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = 𝑔 → ((𝜃 → 𝑓 ∈ 𝑤) ↔ ([𝑔 / 𝑓]𝜃 → 𝑔 ∈ 𝑤))) |
| 36 | 35 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝑔 → (((∃!𝑓𝜃 ∧ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) → (𝜃 → 𝑓 ∈ 𝑤)) ↔ ((∃!𝑓𝜃 ∧ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) → ([𝑔 / 𝑓]𝜃 → 𝑔 ∈ 𝑤)))) |
| 37 | | eupick 2632 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((∃!𝑓𝜃 ∧ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) → (𝜃 → 𝑓 ∈ 𝑤)) |
| 38 | 32, 36, 37 | chvarfv 2239 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∃!𝑓𝜃 ∧ ∃𝑓(𝜃 ∧ 𝑓 ∈ 𝑤)) → ([𝑔 / 𝑓]𝜃 → 𝑔 ∈ 𝑤)) |
| 39 | 22, 25, 38 | syl2an 596 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ ∃𝑓 ∈ 𝑤 𝜃) → ([𝑔 / 𝑓]𝜃 → 𝑔 ∈ 𝑤)) |
| 40 | 21, 39 | biimtrrid 243 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜒 ∧ ∃𝑓 ∈ 𝑤 𝜃) → ((𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′) → 𝑔 ∈ 𝑤)) |
| 41 | 40 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (∃𝑓 ∈ 𝑤 𝜃 → ((𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′) → 𝑔 ∈ 𝑤))) |
| 42 | 18, 41 | embantd 59 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → ((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) → ((𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′) → 𝑔 ∈ 𝑤))) |
| 43 | 42 | impd 410 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → (((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) → 𝑔 ∈ 𝑤)) |
| 44 | 17, 43 | sylbir 235 |
. . . . . . . . . . . . . 14
⊢ ((𝜏 ∧ 𝑛 ∈ 𝐷) → (((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) → 𝑔 ∈ 𝑤)) |
| 45 | 44 | expimpd 453 |
. . . . . . . . . . . . 13
⊢ (𝜏 → ((𝑛 ∈ 𝐷 ∧ ((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) → 𝑔 ∈ 𝑤)) |
| 46 | 14, 45 | biimtrid 242 |
. . . . . . . . . . . 12
⊢ (𝜏 → (((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) → 𝑔 ∈ 𝑤)) |
| 47 | 46 | exlimdv 1932 |
. . . . . . . . . . 11
⊢ (𝜏 → (∃𝑛((𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ (𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) → 𝑔 ∈ 𝑤)) |
| 48 | 13, 47 | syl5 34 |
. . . . . . . . . 10
⊢ (𝜏 → ((∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃) ∧ ∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) → 𝑔 ∈ 𝑤)) |
| 49 | 48 | expdimp 452 |
. . . . . . . . 9
⊢ ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃)) → (∃𝑛(𝑛 ∈ 𝐷 ∧ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)) → 𝑔 ∈ 𝑤)) |
| 50 | 12, 49 | biimtrid 242 |
. . . . . . . 8
⊢ ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃)) → (∃𝑛 ∈ 𝐷 (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′) → 𝑔 ∈ 𝑤)) |
| 51 | 50 | abssdv 4067 |
. . . . . . 7
⊢ ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃)) → {𝑔 ∣ ∃𝑛 ∈ 𝐷 (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)} ⊆ 𝑤) |
| 52 | 11, 51 | eqsstrid 4021 |
. . . . . 6
⊢ ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃)) → 𝐵 ⊆ 𝑤) |
| 53 | | vex 3483 |
. . . . . . 7
⊢ 𝑤 ∈ V |
| 54 | 53 | ssex 5320 |
. . . . . 6
⊢ (𝐵 ⊆ 𝑤 → 𝐵 ∈ V) |
| 55 | 52, 54 | syl 17 |
. . . . 5
⊢ ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃)) → 𝐵 ∈ V) |
| 56 | 55 | ex 412 |
. . . 4
⊢ (𝜏 → (∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃) → 𝐵 ∈ V)) |
| 57 | 56 | exlimdv 1932 |
. . 3
⊢ (𝜏 → (∃𝑤∀𝑛(𝜒 → ∃𝑓 ∈ 𝑤 𝜃) → 𝐵 ∈ V)) |
| 58 | 7, 57 | mpi 20 |
. 2
⊢ (𝜏 → 𝐵 ∈ V) |
| 59 | 1, 58 | sylbir 235 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐵 ∈ V) |