Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj849 Structured version   Visualization version   GIF version

Theorem bnj849 34901
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj849.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj849.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj849.3 𝐷 = (ω ∖ {∅})
bnj849.4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj849.5 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
bnj849.6 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
bnj849.7 (𝜑′[𝑔 / 𝑓]𝜑)
bnj849.8 (𝜓′[𝑔 / 𝑓]𝜓)
bnj849.9 (𝜃′[𝑔 / 𝑓]𝜃)
bnj849.10 (𝜏 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
Assertion
Ref Expression
bnj849 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ∈ V)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐵,𝑔   𝐷,𝑓,𝑔,𝑛   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑛   𝜒,𝑓,𝑔   𝜑,𝑔   𝜓,𝑔   𝜏,𝑔,𝑛   𝜃,𝑔
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝜒(𝑦,𝑖,𝑛)   𝜃(𝑦,𝑓,𝑖,𝑛)   𝜏(𝑦,𝑓,𝑖)   𝐴(𝑔)   𝐵(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦)   𝑅(𝑔)   𝑋(𝑦,𝑔,𝑖)   𝜑′(𝑦,𝑓,𝑔,𝑖,𝑛)   𝜓′(𝑦,𝑓,𝑔,𝑖,𝑛)   𝜃′(𝑦,𝑓,𝑔,𝑖,𝑛)

Proof of Theorem bnj849
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj849.10 . 2 (𝜏 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
2 bnj849.1 . . . 4 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
3 bnj849.2 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
4 bnj849.3 . . . 4 𝐷 = (ω ∖ {∅})
5 bnj849.5 . . . 4 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
6 bnj849.6 . . . 4 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
72, 3, 4, 5, 6bnj865 34899 . . 3 𝑤𝑛(𝜒 → ∃𝑓𝑤 𝜃)
8 bnj849.4 . . . . . . . 8 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
9 bnj849.7 . . . . . . . 8 (𝜑′[𝑔 / 𝑓]𝜑)
10 bnj849.8 . . . . . . . 8 (𝜓′[𝑔 / 𝑓]𝜓)
118, 9, 10bnj873 34900 . . . . . . 7 𝐵 = {𝑔 ∣ ∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′)}
12 df-rex 3077 . . . . . . . . 9 (∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′) ↔ ∃𝑛(𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′)))
13 19.29 1872 . . . . . . . . . . 11 ((∀𝑛(𝜒 → ∃𝑓𝑤 𝜃) ∧ ∃𝑛(𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → ∃𝑛((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))))
14 an12 644 . . . . . . . . . . . . 13 (((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) ↔ (𝑛𝐷 ∧ ((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑔 Fn 𝑛𝜑′𝜓′))))
15 df-3an 1089 . . . . . . . . . . . . . . . 16 ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷))
161anbi1i 623 . . . . . . . . . . . . . . . 16 ((𝜏𝑛𝐷) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷))
1715, 5, 163bitr4i 303 . . . . . . . . . . . . . . 15 (𝜒 ↔ (𝜏𝑛𝐷))
18 id 22 . . . . . . . . . . . . . . . . 17 (𝜒𝜒)
19 bnj849.9 . . . . . . . . . . . . . . . . . . . 20 (𝜃′[𝑔 / 𝑓]𝜃)
206, 9, 10, 19bnj581 34884 . . . . . . . . . . . . . . . . . . . 20 (𝜃′ ↔ (𝑔 Fn 𝑛𝜑′𝜓′))
2119, 20bitr3i 277 . . . . . . . . . . . . . . . . . . 19 ([𝑔 / 𝑓]𝜃 ↔ (𝑔 Fn 𝑛𝜑′𝜓′))
222, 3, 4, 5, 6bnj864 34898 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∃!𝑓𝜃)
23 df-rex 3077 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑓𝑤 𝜃 ↔ ∃𝑓(𝑓𝑤𝜃))
24 exancom 1860 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑓(𝑓𝑤𝜃) ↔ ∃𝑓(𝜃𝑓𝑤))
2523, 24sylbb 219 . . . . . . . . . . . . . . . . . . . 20 (∃𝑓𝑤 𝜃 → ∃𝑓(𝜃𝑓𝑤))
26 nfeu1 2591 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓∃!𝑓𝜃
27 nfe1 2151 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓𝑓(𝜃𝑓𝑤)
2826, 27nfan 1898 . . . . . . . . . . . . . . . . . . . . . 22 𝑓(∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤))
29 nfsbc1v 3824 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓[𝑔 / 𝑓]𝜃
30 nfv 1913 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓 𝑔𝑤
3129, 30nfim 1895 . . . . . . . . . . . . . . . . . . . . . 22 𝑓([𝑔 / 𝑓]𝜃𝑔𝑤)
3228, 31nfim 1895 . . . . . . . . . . . . . . . . . . . . 21 𝑓((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → ([𝑔 / 𝑓]𝜃𝑔𝑤))
33 sbceq1a 3815 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (𝜃[𝑔 / 𝑓]𝜃))
34 elequ1 2115 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (𝑓𝑤𝑔𝑤))
3533, 34imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑔 → ((𝜃𝑓𝑤) ↔ ([𝑔 / 𝑓]𝜃𝑔𝑤)))
3635imbi2d 340 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → (((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → (𝜃𝑓𝑤)) ↔ ((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → ([𝑔 / 𝑓]𝜃𝑔𝑤))))
37 eupick 2636 . . . . . . . . . . . . . . . . . . . . 21 ((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → (𝜃𝑓𝑤))
3832, 36, 37chvarfv 2241 . . . . . . . . . . . . . . . . . . . 20 ((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → ([𝑔 / 𝑓]𝜃𝑔𝑤))
3922, 25, 38syl2an 595 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ ∃𝑓𝑤 𝜃) → ([𝑔 / 𝑓]𝜃𝑔𝑤))
4021, 39biimtrrid 243 . . . . . . . . . . . . . . . . . 18 ((𝜒 ∧ ∃𝑓𝑤 𝜃) → ((𝑔 Fn 𝑛𝜑′𝜓′) → 𝑔𝑤))
4140ex 412 . . . . . . . . . . . . . . . . 17 (𝜒 → (∃𝑓𝑤 𝜃 → ((𝑔 Fn 𝑛𝜑′𝜓′) → 𝑔𝑤)))
4218, 41embantd 59 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝜒 → ∃𝑓𝑤 𝜃) → ((𝑔 Fn 𝑛𝜑′𝜓′) → 𝑔𝑤)))
4342impd 410 . . . . . . . . . . . . . . 15 (𝜒 → (((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑔 Fn 𝑛𝜑′𝜓′)) → 𝑔𝑤))
4417, 43sylbir 235 . . . . . . . . . . . . . 14 ((𝜏𝑛𝐷) → (((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑔 Fn 𝑛𝜑′𝜓′)) → 𝑔𝑤))
4544expimpd 453 . . . . . . . . . . . . 13 (𝜏 → ((𝑛𝐷 ∧ ((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → 𝑔𝑤))
4614, 45biimtrid 242 . . . . . . . . . . . 12 (𝜏 → (((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → 𝑔𝑤))
4746exlimdv 1932 . . . . . . . . . . 11 (𝜏 → (∃𝑛((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → 𝑔𝑤))
4813, 47syl5 34 . . . . . . . . . 10 (𝜏 → ((∀𝑛(𝜒 → ∃𝑓𝑤 𝜃) ∧ ∃𝑛(𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → 𝑔𝑤))
4948expdimp 452 . . . . . . . . 9 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → (∃𝑛(𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′)) → 𝑔𝑤))
5012, 49biimtrid 242 . . . . . . . 8 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → (∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′) → 𝑔𝑤))
5150abssdv 4091 . . . . . . 7 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → {𝑔 ∣ ∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′)} ⊆ 𝑤)
5211, 51eqsstrid 4057 . . . . . 6 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → 𝐵𝑤)
53 vex 3492 . . . . . . 7 𝑤 ∈ V
5453ssex 5339 . . . . . 6 (𝐵𝑤𝐵 ∈ V)
5552, 54syl 17 . . . . 5 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → 𝐵 ∈ V)
5655ex 412 . . . 4 (𝜏 → (∀𝑛(𝜒 → ∃𝑓𝑤 𝜃) → 𝐵 ∈ V))
5756exlimdv 1932 . . 3 (𝜏 → (∃𝑤𝑛(𝜒 → ∃𝑓𝑤 𝜃) → 𝐵 ∈ V))
587, 57mpi 20 . 2 (𝜏𝐵 ∈ V)
591, 58sylbir 235 1 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  [wsbc 3804  cdif 3973  wss 3976  c0 4352  {csn 4648   ciun 5015  suc csuc 6397   Fn wfn 6568  cfv 6573  ωcom 7903   predc-bnj14 34664   FrSe w-bnj15 34668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-bnj17 34663  df-bnj14 34665  df-bnj13 34667  df-bnj15 34669
This theorem is referenced by:  bnj893  34904
  Copyright terms: Public domain W3C validator