Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj849 Structured version   Visualization version   GIF version

Theorem bnj849 34908
Description: Technical lemma for bnj69 34993. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj849.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj849.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj849.3 𝐷 = (ω ∖ {∅})
bnj849.4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj849.5 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
bnj849.6 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
bnj849.7 (𝜑′[𝑔 / 𝑓]𝜑)
bnj849.8 (𝜓′[𝑔 / 𝑓]𝜓)
bnj849.9 (𝜃′[𝑔 / 𝑓]𝜃)
bnj849.10 (𝜏 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
Assertion
Ref Expression
bnj849 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ∈ V)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐵,𝑔   𝐷,𝑓,𝑔,𝑛   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑛   𝜒,𝑓,𝑔   𝜑,𝑔   𝜓,𝑔   𝜏,𝑔,𝑛   𝜃,𝑔
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝜒(𝑦,𝑖,𝑛)   𝜃(𝑦,𝑓,𝑖,𝑛)   𝜏(𝑦,𝑓,𝑖)   𝐴(𝑔)   𝐵(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦)   𝑅(𝑔)   𝑋(𝑦,𝑔,𝑖)   𝜑′(𝑦,𝑓,𝑔,𝑖,𝑛)   𝜓′(𝑦,𝑓,𝑔,𝑖,𝑛)   𝜃′(𝑦,𝑓,𝑔,𝑖,𝑛)

Proof of Theorem bnj849
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj849.10 . 2 (𝜏 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
2 bnj849.1 . . . 4 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
3 bnj849.2 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
4 bnj849.3 . . . 4 𝐷 = (ω ∖ {∅})
5 bnj849.5 . . . 4 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
6 bnj849.6 . . . 4 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
72, 3, 4, 5, 6bnj865 34906 . . 3 𝑤𝑛(𝜒 → ∃𝑓𝑤 𝜃)
8 bnj849.4 . . . . . . . 8 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
9 bnj849.7 . . . . . . . 8 (𝜑′[𝑔 / 𝑓]𝜑)
10 bnj849.8 . . . . . . . 8 (𝜓′[𝑔 / 𝑓]𝜓)
118, 9, 10bnj873 34907 . . . . . . 7 𝐵 = {𝑔 ∣ ∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′)}
12 df-rex 3054 . . . . . . . . 9 (∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′) ↔ ∃𝑛(𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′)))
13 19.29 1873 . . . . . . . . . . 11 ((∀𝑛(𝜒 → ∃𝑓𝑤 𝜃) ∧ ∃𝑛(𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → ∃𝑛((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))))
14 an12 645 . . . . . . . . . . . . 13 (((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) ↔ (𝑛𝐷 ∧ ((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑔 Fn 𝑛𝜑′𝜓′))))
15 df-3an 1088 . . . . . . . . . . . . . . . 16 ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷))
161anbi1i 624 . . . . . . . . . . . . . . . 16 ((𝜏𝑛𝐷) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷))
1715, 5, 163bitr4i 303 . . . . . . . . . . . . . . 15 (𝜒 ↔ (𝜏𝑛𝐷))
18 id 22 . . . . . . . . . . . . . . . . 17 (𝜒𝜒)
19 bnj849.9 . . . . . . . . . . . . . . . . . . . 20 (𝜃′[𝑔 / 𝑓]𝜃)
206, 9, 10, 19bnj581 34891 . . . . . . . . . . . . . . . . . . . 20 (𝜃′ ↔ (𝑔 Fn 𝑛𝜑′𝜓′))
2119, 20bitr3i 277 . . . . . . . . . . . . . . . . . . 19 ([𝑔 / 𝑓]𝜃 ↔ (𝑔 Fn 𝑛𝜑′𝜓′))
222, 3, 4, 5, 6bnj864 34905 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∃!𝑓𝜃)
23 df-rex 3054 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑓𝑤 𝜃 ↔ ∃𝑓(𝑓𝑤𝜃))
24 exancom 1861 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑓(𝑓𝑤𝜃) ↔ ∃𝑓(𝜃𝑓𝑤))
2523, 24sylbb 219 . . . . . . . . . . . . . . . . . . . 20 (∃𝑓𝑤 𝜃 → ∃𝑓(𝜃𝑓𝑤))
26 nfeu1 2581 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓∃!𝑓𝜃
27 nfe1 2151 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓𝑓(𝜃𝑓𝑤)
2826, 27nfan 1899 . . . . . . . . . . . . . . . . . . . . . 22 𝑓(∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤))
29 nfsbc1v 3762 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓[𝑔 / 𝑓]𝜃
30 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑓 𝑔𝑤
3129, 30nfim 1896 . . . . . . . . . . . . . . . . . . . . . 22 𝑓([𝑔 / 𝑓]𝜃𝑔𝑤)
3228, 31nfim 1896 . . . . . . . . . . . . . . . . . . . . 21 𝑓((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → ([𝑔 / 𝑓]𝜃𝑔𝑤))
33 sbceq1a 3753 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (𝜃[𝑔 / 𝑓]𝜃))
34 elequ1 2116 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝑔 → (𝑓𝑤𝑔𝑤))
3533, 34imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝑔 → ((𝜃𝑓𝑤) ↔ ([𝑔 / 𝑓]𝜃𝑔𝑤)))
3635imbi2d 340 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑔 → (((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → (𝜃𝑓𝑤)) ↔ ((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → ([𝑔 / 𝑓]𝜃𝑔𝑤))))
37 eupick 2626 . . . . . . . . . . . . . . . . . . . . 21 ((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → (𝜃𝑓𝑤))
3832, 36, 37chvarfv 2241 . . . . . . . . . . . . . . . . . . . 20 ((∃!𝑓𝜃 ∧ ∃𝑓(𝜃𝑓𝑤)) → ([𝑔 / 𝑓]𝜃𝑔𝑤))
3922, 25, 38syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜒 ∧ ∃𝑓𝑤 𝜃) → ([𝑔 / 𝑓]𝜃𝑔𝑤))
4021, 39biimtrrid 243 . . . . . . . . . . . . . . . . . 18 ((𝜒 ∧ ∃𝑓𝑤 𝜃) → ((𝑔 Fn 𝑛𝜑′𝜓′) → 𝑔𝑤))
4140ex 412 . . . . . . . . . . . . . . . . 17 (𝜒 → (∃𝑓𝑤 𝜃 → ((𝑔 Fn 𝑛𝜑′𝜓′) → 𝑔𝑤)))
4218, 41embantd 59 . . . . . . . . . . . . . . . 16 (𝜒 → ((𝜒 → ∃𝑓𝑤 𝜃) → ((𝑔 Fn 𝑛𝜑′𝜓′) → 𝑔𝑤)))
4342impd 410 . . . . . . . . . . . . . . 15 (𝜒 → (((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑔 Fn 𝑛𝜑′𝜓′)) → 𝑔𝑤))
4417, 43sylbir 235 . . . . . . . . . . . . . 14 ((𝜏𝑛𝐷) → (((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑔 Fn 𝑛𝜑′𝜓′)) → 𝑔𝑤))
4544expimpd 453 . . . . . . . . . . . . 13 (𝜏 → ((𝑛𝐷 ∧ ((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → 𝑔𝑤))
4614, 45biimtrid 242 . . . . . . . . . . . 12 (𝜏 → (((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → 𝑔𝑤))
4746exlimdv 1933 . . . . . . . . . . 11 (𝜏 → (∃𝑛((𝜒 → ∃𝑓𝑤 𝜃) ∧ (𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → 𝑔𝑤))
4813, 47syl5 34 . . . . . . . . . 10 (𝜏 → ((∀𝑛(𝜒 → ∃𝑓𝑤 𝜃) ∧ ∃𝑛(𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′))) → 𝑔𝑤))
4948expdimp 452 . . . . . . . . 9 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → (∃𝑛(𝑛𝐷 ∧ (𝑔 Fn 𝑛𝜑′𝜓′)) → 𝑔𝑤))
5012, 49biimtrid 242 . . . . . . . 8 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → (∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′) → 𝑔𝑤))
5150abssdv 4020 . . . . . . 7 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → {𝑔 ∣ ∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′)} ⊆ 𝑤)
5211, 51eqsstrid 3974 . . . . . 6 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → 𝐵𝑤)
53 vex 3440 . . . . . . 7 𝑤 ∈ V
5453ssex 5260 . . . . . 6 (𝐵𝑤𝐵 ∈ V)
5552, 54syl 17 . . . . 5 ((𝜏 ∧ ∀𝑛(𝜒 → ∃𝑓𝑤 𝜃)) → 𝐵 ∈ V)
5655ex 412 . . . 4 (𝜏 → (∀𝑛(𝜒 → ∃𝑓𝑤 𝜃) → 𝐵 ∈ V))
5756exlimdv 1933 . . 3 (𝜏 → (∃𝑤𝑛(𝜒 → ∃𝑓𝑤 𝜃) → 𝐵 ∈ V))
587, 57mpi 20 . 2 (𝜏𝐵 ∈ V)
591, 58sylbir 235 1 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  {cab 2707  wral 3044  wrex 3053  Vcvv 3436  [wsbc 3742  cdif 3900  wss 3903  c0 4284  {csn 4577   ciun 4941  suc csuc 6309   Fn wfn 6477  cfv 6482  ωcom 7799   predc-bnj14 34671   FrSe w-bnj15 34675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-bnj17 34670  df-bnj14 34672  df-bnj13 34674  df-bnj15 34676
This theorem is referenced by:  bnj893  34911
  Copyright terms: Public domain W3C validator