MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stccnp Structured version   Visualization version   GIF version

Theorem 1stccnp 21986
Description: A mapping is continuous at 𝑃 in a first-countable space 𝑋 iff it is sequentially continuous at 𝑃, meaning that the image under 𝐹 of every sequence converging at 𝑃 converges to 𝐹(𝑃). This proof uses ax-cc 9846, but only via 1stcelcls 21985, so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
1stccnp.1 (𝜑𝐽 ∈ 1stω)
1stccnp.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stccnp.3 (𝜑𝐾 ∈ (TopOn‘𝑌))
1stccnp.4 (𝜑𝑃𝑋)
Assertion
Ref Expression
1stccnp (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐽   𝜑,𝑓   𝑓,𝐾   𝑓,𝑋   𝑓,𝑌   𝑃,𝑓

Proof of Theorem 1stccnp
Dummy variables 𝑗 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stccnp.2 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 1stccnp.3 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
31, 2jca 512 . . . 4 (𝜑 → (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)))
4 cnpf2 21774 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
543expa 1112 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
63, 5sylan 580 . . 3 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
7 simprr 769 . . . . . 6 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → 𝑓(⇝𝑡𝐽)𝑃)
8 simplr 765 . . . . . 6 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
97, 8lmcnp 21828 . . . . 5 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))
109ex 413 . . . 4 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))
1110alrimiv 1921 . . 3 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))
126, 11jca 512 . 2 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))))
13 simprl 767 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → 𝐹:𝑋𝑌)
14 fal 1544 . . . . . . . . 9 ¬ ⊥
15 19.29 1867 . . . . . . . . . . . . . 14 ((∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ∃𝑓(((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
16 simprl 767 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)))
17 difss 4112 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∖ (𝐹𝑢)) ⊆ 𝑋
18 fss 6524 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝑋) → 𝑓:ℕ⟶𝑋)
1916, 17, 18sylancl 586 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓:ℕ⟶𝑋)
20 simprr 769 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓(⇝𝑡𝐽)𝑃)
2119, 20jca 512 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃))
22 nnuz 12270 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
23 simplrr 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (𝐹𝑃) ∈ 𝑢)
24 1zzd 12002 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 1 ∈ ℤ)
25 simprr 769 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))
26 simplrl 773 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑢𝐾)
2722, 23, 24, 25, 26lmcvg 21786 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢)
2822r19.2uz 14701 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢 → ∃𝑘 ∈ ℕ ((𝐹𝑓)‘𝑘) ∈ 𝑢)
29 simprll 775 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)))
3029ffnd 6512 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑓 Fn ℕ)
31 fvco2 6755 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 Fn ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
3230, 31sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
3332eleq1d 2902 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑓)‘𝑘) ∈ 𝑢 ↔ (𝐹‘(𝑓𝑘)) ∈ 𝑢))
3429ffvelrnda 6847 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ (𝑋 ∖ (𝐹𝑢)))
3534eldifad 3952 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝑋)
36 simplr 765 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐹:𝑋𝑌)
3736ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → 𝐹:𝑋𝑌)
38 ffn 6511 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
39 elpreima 6824 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 Fn 𝑋 → ((𝑓𝑘) ∈ (𝐹𝑢) ↔ ((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢)))
4037, 38, 393syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) ∈ (𝐹𝑢) ↔ ((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢)))
4134eldifbd 3953 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ¬ (𝑓𝑘) ∈ (𝐹𝑢))
4241pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) ∈ (𝐹𝑢) → ⊥))
4340, 42sylbird 261 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢) → ⊥))
4435, 43mpand 691 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑓𝑘)) ∈ 𝑢 → ⊥))
4533, 44sylbid 241 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4645rexlimdva 3289 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (∃𝑘 ∈ ℕ ((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4728, 46syl5 34 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4827, 47mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → ⊥)
4948expr 457 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ((𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃) → ⊥))
5021, 49embantd 59 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ⊥))
5150ex 413 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ⊥)))
5251impcomd 412 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5352exlimdv 1927 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑓(((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5415, 53syl5 34 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5554exp4b 431 . . . . . . . . . . . 12 ((𝜑𝐹:𝑋𝑌) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))))
5655com23 86 . . . . . . . . . . 11 ((𝜑𝐹:𝑋𝑌) → (∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))))
5756impr 455 . . . . . . . . . 10 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥)))
5857imp 407 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))
5914, 58mtoi 200 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃))
60 1stccnp.1 . . . . . . . . . 10 (𝜑𝐽 ∈ 1stω)
6160ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ 1stω)
621ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ (TopOn‘𝑋))
63 toponuni 21438 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
6462, 63syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑋 = 𝐽)
6517, 64sseqtrid 4023 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽)
66 eqid 2826 . . . . . . . . . 10 𝐽 = 𝐽
67661stcelcls 21985 . . . . . . . . 9 ((𝐽 ∈ 1stω ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
6861, 65, 67syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
6959, 68mtbird 326 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))))
70 topontop 21437 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
7162, 70syl 17 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ Top)
72 1stccnp.4 . . . . . . . . . 10 (𝜑𝑃𝑋)
7372ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑃𝑋)
7473, 64eleqtrd 2920 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑃 𝐽)
7566elcls 21597 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
7671, 65, 74, 75syl3anc 1365 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
7769, 76mtbid 325 . . . . . 6 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
7813ad2antrr 722 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝐹:𝑋𝑌)
7978ffund 6515 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → Fun 𝐹)
80 toponss 21451 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑣𝐽) → 𝑣𝑋)
8162, 80sylan 580 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝑣𝑋)
8278fdmd 6520 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → dom 𝐹 = 𝑋)
8381, 82sseqtrrd 4012 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝑣 ⊆ dom 𝐹)
84 funimass3 6820 . . . . . . . . . . . 12 ((Fun 𝐹𝑣 ⊆ dom 𝐹) → ((𝐹𝑣) ⊆ 𝑢𝑣 ⊆ (𝐹𝑢)))
8579, 83, 84syl2anc 584 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢𝑣 ⊆ (𝐹𝑢)))
86 df-ss 3956 . . . . . . . . . . . . 13 (𝑣𝑋 ↔ (𝑣𝑋) = 𝑣)
8781, 86sylib 219 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → (𝑣𝑋) = 𝑣)
8887sseq1d 4002 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝑣𝑋) ⊆ (𝐹𝑢) ↔ 𝑣 ⊆ (𝐹𝑢)))
8985, 88bitr4d 283 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢 ↔ (𝑣𝑋) ⊆ (𝐹𝑢)))
90 nne 3025 . . . . . . . . . . 11 (¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅ ↔ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) = ∅)
91 inssdif0 4333 . . . . . . . . . . 11 ((𝑣𝑋) ⊆ (𝐹𝑢) ↔ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) = ∅)
9290, 91bitr4i 279 . . . . . . . . . 10 (¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅ ↔ (𝑣𝑋) ⊆ (𝐹𝑢))
9389, 92syl6bbr 290 . . . . . . . . 9 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢 ↔ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
9493anbi2d 628 . . . . . . . 8 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
9594rexbidva 3301 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ ∃𝑣𝐽 (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
96 rexanali 3270 . . . . . . 7 (∃𝑣𝐽 (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅) ↔ ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
9795, 96syl6bb 288 . . . . . 6 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
9877, 97mpbird 258 . . . . 5 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))
9998expr 457 . . . 4 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ 𝑢𝐾) → ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
10099ralrimiva 3187 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
101 iscnp 21761 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
1021, 2, 72, 101syl3anc 1365 . . . 4 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
103102adantr 481 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
10413, 100, 103mpbir2and 709 . 2 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
10512, 104impbida 797 1 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wal 1528   = wceq 1530  wfal 1542  wex 1773  wcel 2107  wne 3021  wral 3143  wrex 3144  cdif 3937  cin 3939  wss 3940  c0 4295   cuni 4837   class class class wbr 5063  ccnv 5553  dom cdm 5554  cima 5557  ccom 5558  Fun wfun 6346   Fn wfn 6347  wf 6348  cfv 6352  (class class class)co 7148  1c1 10527  cn 11627  cuz 12232  Topctop 21417  TopOnctopon 21434  clsccl 21542   CnP ccnp 21749  𝑡clm 21750  1stωc1stc 21961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-top 21418  df-topon 21435  df-cld 21543  df-ntr 21544  df-cls 21545  df-cnp 21752  df-lm 21753  df-1stc 21963
This theorem is referenced by:  1stccn  21987  metcnp4  23828
  Copyright terms: Public domain W3C validator