MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stccnp Structured version   Visualization version   GIF version

Theorem 1stccnp 23491
Description: A mapping is continuous at 𝑃 in a first-countable space 𝑋 iff it is sequentially continuous at 𝑃, meaning that the image under 𝐹 of every sequence converging at 𝑃 converges to 𝐹(𝑃). This proof uses ax-cc 10504, but only via 1stcelcls 23490, so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
1stccnp.1 (𝜑𝐽 ∈ 1stω)
1stccnp.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stccnp.3 (𝜑𝐾 ∈ (TopOn‘𝑌))
1stccnp.4 (𝜑𝑃𝑋)
Assertion
Ref Expression
1stccnp (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐽   𝜑,𝑓   𝑓,𝐾   𝑓,𝑋   𝑓,𝑌   𝑃,𝑓

Proof of Theorem 1stccnp
Dummy variables 𝑗 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stccnp.2 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 1stccnp.3 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
31, 2jca 511 . . . 4 (𝜑 → (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)))
4 cnpf2 23279 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
543expa 1118 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
63, 5sylan 579 . . 3 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
7 simprr 772 . . . . . 6 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → 𝑓(⇝𝑡𝐽)𝑃)
8 simplr 768 . . . . . 6 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
97, 8lmcnp 23333 . . . . 5 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))
109ex 412 . . . 4 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))
1110alrimiv 1926 . . 3 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))
126, 11jca 511 . 2 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))))
13 simprl 770 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → 𝐹:𝑋𝑌)
14 fal 1551 . . . . . . . . 9 ¬ ⊥
15 19.29 1872 . . . . . . . . . . . . . 14 ((∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ∃𝑓(((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
16 simprl 770 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)))
17 difss 4159 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∖ (𝐹𝑢)) ⊆ 𝑋
18 fss 6763 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝑋) → 𝑓:ℕ⟶𝑋)
1916, 17, 18sylancl 585 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓:ℕ⟶𝑋)
20 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓(⇝𝑡𝐽)𝑃)
2119, 20jca 511 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃))
22 nnuz 12946 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
23 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (𝐹𝑃) ∈ 𝑢)
24 1zzd 12674 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 1 ∈ ℤ)
25 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))
26 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑢𝐾)
2722, 23, 24, 25, 26lmcvg 23291 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢)
2822r19.2uz 15400 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢 → ∃𝑘 ∈ ℕ ((𝐹𝑓)‘𝑘) ∈ 𝑢)
29 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)))
3029ffnd 6748 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑓 Fn ℕ)
31 fvco2 7019 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 Fn ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
3230, 31sylan 579 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
3332eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑓)‘𝑘) ∈ 𝑢 ↔ (𝐹‘(𝑓𝑘)) ∈ 𝑢))
3429ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ (𝑋 ∖ (𝐹𝑢)))
3534eldifad 3988 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝑋)
36 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐹:𝑋𝑌)
3736ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → 𝐹:𝑋𝑌)
38 ffn 6747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
39 elpreima 7091 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 Fn 𝑋 → ((𝑓𝑘) ∈ (𝐹𝑢) ↔ ((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢)))
4037, 38, 393syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) ∈ (𝐹𝑢) ↔ ((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢)))
4134eldifbd 3989 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ¬ (𝑓𝑘) ∈ (𝐹𝑢))
4241pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) ∈ (𝐹𝑢) → ⊥))
4340, 42sylbird 260 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢) → ⊥))
4435, 43mpand 694 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑓𝑘)) ∈ 𝑢 → ⊥))
4533, 44sylbid 240 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4645rexlimdva 3161 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (∃𝑘 ∈ ℕ ((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4728, 46syl5 34 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4827, 47mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → ⊥)
4948expr 456 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ((𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃) → ⊥))
5021, 49embantd 59 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ⊥))
5150ex 412 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ⊥)))
5251impcomd 411 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5352exlimdv 1932 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑓(((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5415, 53syl5 34 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5554exp4b 430 . . . . . . . . . . . 12 ((𝜑𝐹:𝑋𝑌) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))))
5655com23 86 . . . . . . . . . . 11 ((𝜑𝐹:𝑋𝑌) → (∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))))
5756impr 454 . . . . . . . . . 10 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥)))
5857imp 406 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))
5914, 58mtoi 199 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃))
60 1stccnp.1 . . . . . . . . . 10 (𝜑𝐽 ∈ 1stω)
6160ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ 1stω)
621ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ (TopOn‘𝑋))
63 toponuni 22941 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
6462, 63syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑋 = 𝐽)
6517, 64sseqtrid 4061 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽)
66 eqid 2740 . . . . . . . . . 10 𝐽 = 𝐽
67661stcelcls 23490 . . . . . . . . 9 ((𝐽 ∈ 1stω ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
6861, 65, 67syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
6959, 68mtbird 325 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))))
70 topontop 22940 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
7162, 70syl 17 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ Top)
72 1stccnp.4 . . . . . . . . . 10 (𝜑𝑃𝑋)
7372ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑃𝑋)
7473, 64eleqtrd 2846 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑃 𝐽)
7566elcls 23102 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
7671, 65, 74, 75syl3anc 1371 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
7769, 76mtbid 324 . . . . . 6 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
7813ad2antrr 725 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝐹:𝑋𝑌)
7978ffund 6751 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → Fun 𝐹)
80 toponss 22954 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑣𝐽) → 𝑣𝑋)
8162, 80sylan 579 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝑣𝑋)
8278fdmd 6757 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → dom 𝐹 = 𝑋)
8381, 82sseqtrrd 4050 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝑣 ⊆ dom 𝐹)
84 funimass3 7087 . . . . . . . . . . . 12 ((Fun 𝐹𝑣 ⊆ dom 𝐹) → ((𝐹𝑣) ⊆ 𝑢𝑣 ⊆ (𝐹𝑢)))
8579, 83, 84syl2anc 583 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢𝑣 ⊆ (𝐹𝑢)))
86 dfss2 3994 . . . . . . . . . . . . 13 (𝑣𝑋 ↔ (𝑣𝑋) = 𝑣)
8781, 86sylib 218 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → (𝑣𝑋) = 𝑣)
8887sseq1d 4040 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝑣𝑋) ⊆ (𝐹𝑢) ↔ 𝑣 ⊆ (𝐹𝑢)))
8985, 88bitr4d 282 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢 ↔ (𝑣𝑋) ⊆ (𝐹𝑢)))
90 nne 2950 . . . . . . . . . . 11 (¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅ ↔ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) = ∅)
91 inssdif0 4397 . . . . . . . . . . 11 ((𝑣𝑋) ⊆ (𝐹𝑢) ↔ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) = ∅)
9290, 91bitr4i 278 . . . . . . . . . 10 (¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅ ↔ (𝑣𝑋) ⊆ (𝐹𝑢))
9389, 92bitr4di 289 . . . . . . . . 9 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢 ↔ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
9493anbi2d 629 . . . . . . . 8 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
9594rexbidva 3183 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ ∃𝑣𝐽 (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
96 rexanali 3108 . . . . . . 7 (∃𝑣𝐽 (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅) ↔ ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
9795, 96bitrdi 287 . . . . . 6 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
9877, 97mpbird 257 . . . . 5 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))
9998expr 456 . . . 4 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ 𝑢𝐾) → ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
10099ralrimiva 3152 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
101 iscnp 23266 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
1021, 2, 72, 101syl3anc 1371 . . . 4 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
103102adantr 480 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
10413, 100, 103mpbir2and 712 . 2 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
10512, 104impbida 800 1 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wfal 1549  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  cin 3975  wss 3976  c0 4352   cuni 4931   class class class wbr 5166  ccnv 5699  dom cdm 5700  cima 5703  ccom 5704  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  1c1 11185  cn 12293  cuz 12903  Topctop 22920  TopOnctopon 22937  clsccl 23047   CnP ccnp 23254  𝑡clm 23255  1stωc1stc 23466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-top 22921  df-topon 22938  df-cld 23048  df-ntr 23049  df-cls 23050  df-cnp 23257  df-lm 23258  df-1stc 23468
This theorem is referenced by:  1stccn  23492  metcnp4  25363
  Copyright terms: Public domain W3C validator