MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stccnp Structured version   Visualization version   GIF version

Theorem 1stccnp 22162
Description: A mapping is continuous at 𝑃 in a first-countable space 𝑋 iff it is sequentially continuous at 𝑃, meaning that the image under 𝐹 of every sequence converging at 𝑃 converges to 𝐹(𝑃). This proof uses ax-cc 9895, but only via 1stcelcls 22161, so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
1stccnp.1 (𝜑𝐽 ∈ 1stω)
1stccnp.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stccnp.3 (𝜑𝐾 ∈ (TopOn‘𝑌))
1stccnp.4 (𝜑𝑃𝑋)
Assertion
Ref Expression
1stccnp (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐽   𝜑,𝑓   𝑓,𝐾   𝑓,𝑋   𝑓,𝑌   𝑃,𝑓

Proof of Theorem 1stccnp
Dummy variables 𝑗 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stccnp.2 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 1stccnp.3 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
31, 2jca 515 . . . 4 (𝜑 → (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)))
4 cnpf2 21950 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
543expa 1115 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
63, 5sylan 583 . . 3 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
7 simprr 772 . . . . . 6 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → 𝑓(⇝𝑡𝐽)𝑃)
8 simplr 768 . . . . . 6 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
97, 8lmcnp 22004 . . . . 5 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))
109ex 416 . . . 4 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))
1110alrimiv 1928 . . 3 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))
126, 11jca 515 . 2 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))))
13 simprl 770 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → 𝐹:𝑋𝑌)
14 fal 1552 . . . . . . . . 9 ¬ ⊥
15 19.29 1874 . . . . . . . . . . . . . 14 ((∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ∃𝑓(((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
16 simprl 770 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)))
17 difss 4037 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∖ (𝐹𝑢)) ⊆ 𝑋
18 fss 6512 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝑋) → 𝑓:ℕ⟶𝑋)
1916, 17, 18sylancl 589 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓:ℕ⟶𝑋)
20 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓(⇝𝑡𝐽)𝑃)
2119, 20jca 515 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃))
22 nnuz 12321 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
23 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (𝐹𝑃) ∈ 𝑢)
24 1zzd 12052 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 1 ∈ ℤ)
25 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))
26 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑢𝐾)
2722, 23, 24, 25, 26lmcvg 21962 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢)
2822r19.2uz 14759 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢 → ∃𝑘 ∈ ℕ ((𝐹𝑓)‘𝑘) ∈ 𝑢)
29 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)))
3029ffnd 6499 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑓 Fn ℕ)
31 fvco2 6749 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 Fn ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
3230, 31sylan 583 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
3332eleq1d 2836 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑓)‘𝑘) ∈ 𝑢 ↔ (𝐹‘(𝑓𝑘)) ∈ 𝑢))
3429ffvelrnda 6842 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ (𝑋 ∖ (𝐹𝑢)))
3534eldifad 3870 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝑋)
36 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐹:𝑋𝑌)
3736ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → 𝐹:𝑋𝑌)
38 ffn 6498 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
39 elpreima 6819 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 Fn 𝑋 → ((𝑓𝑘) ∈ (𝐹𝑢) ↔ ((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢)))
4037, 38, 393syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) ∈ (𝐹𝑢) ↔ ((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢)))
4134eldifbd 3871 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ¬ (𝑓𝑘) ∈ (𝐹𝑢))
4241pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) ∈ (𝐹𝑢) → ⊥))
4340, 42sylbird 263 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢) → ⊥))
4435, 43mpand 694 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑓𝑘)) ∈ 𝑢 → ⊥))
4533, 44sylbid 243 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4645rexlimdva 3208 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (∃𝑘 ∈ ℕ ((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4728, 46syl5 34 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4827, 47mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → ⊥)
4948expr 460 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ((𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃) → ⊥))
5021, 49embantd 59 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ⊥))
5150ex 416 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ⊥)))
5251impcomd 415 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5352exlimdv 1934 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑓(((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5415, 53syl5 34 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5554exp4b 434 . . . . . . . . . . . 12 ((𝜑𝐹:𝑋𝑌) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))))
5655com23 86 . . . . . . . . . . 11 ((𝜑𝐹:𝑋𝑌) → (∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))))
5756impr 458 . . . . . . . . . 10 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥)))
5857imp 410 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))
5914, 58mtoi 202 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃))
60 1stccnp.1 . . . . . . . . . 10 (𝜑𝐽 ∈ 1stω)
6160ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ 1stω)
621ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ (TopOn‘𝑋))
63 toponuni 21614 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
6462, 63syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑋 = 𝐽)
6517, 64sseqtrid 3944 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽)
66 eqid 2758 . . . . . . . . . 10 𝐽 = 𝐽
67661stcelcls 22161 . . . . . . . . 9 ((𝐽 ∈ 1stω ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
6861, 65, 67syl2anc 587 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
6959, 68mtbird 328 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))))
70 topontop 21613 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
7162, 70syl 17 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ Top)
72 1stccnp.4 . . . . . . . . . 10 (𝜑𝑃𝑋)
7372ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑃𝑋)
7473, 64eleqtrd 2854 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑃 𝐽)
7566elcls 21773 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
7671, 65, 74, 75syl3anc 1368 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
7769, 76mtbid 327 . . . . . 6 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
7813ad2antrr 725 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝐹:𝑋𝑌)
7978ffund 6502 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → Fun 𝐹)
80 toponss 21627 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑣𝐽) → 𝑣𝑋)
8162, 80sylan 583 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝑣𝑋)
8278fdmd 6508 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → dom 𝐹 = 𝑋)
8381, 82sseqtrrd 3933 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝑣 ⊆ dom 𝐹)
84 funimass3 6815 . . . . . . . . . . . 12 ((Fun 𝐹𝑣 ⊆ dom 𝐹) → ((𝐹𝑣) ⊆ 𝑢𝑣 ⊆ (𝐹𝑢)))
8579, 83, 84syl2anc 587 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢𝑣 ⊆ (𝐹𝑢)))
86 df-ss 3875 . . . . . . . . . . . . 13 (𝑣𝑋 ↔ (𝑣𝑋) = 𝑣)
8781, 86sylib 221 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → (𝑣𝑋) = 𝑣)
8887sseq1d 3923 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝑣𝑋) ⊆ (𝐹𝑢) ↔ 𝑣 ⊆ (𝐹𝑢)))
8985, 88bitr4d 285 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢 ↔ (𝑣𝑋) ⊆ (𝐹𝑢)))
90 nne 2955 . . . . . . . . . . 11 (¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅ ↔ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) = ∅)
91 inssdif0 4268 . . . . . . . . . . 11 ((𝑣𝑋) ⊆ (𝐹𝑢) ↔ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) = ∅)
9290, 91bitr4i 281 . . . . . . . . . 10 (¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅ ↔ (𝑣𝑋) ⊆ (𝐹𝑢))
9389, 92bitr4di 292 . . . . . . . . 9 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢 ↔ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
9493anbi2d 631 . . . . . . . 8 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
9594rexbidva 3220 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ ∃𝑣𝐽 (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
96 rexanali 3189 . . . . . . 7 (∃𝑣𝐽 (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅) ↔ ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
9795, 96bitrdi 290 . . . . . 6 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
9877, 97mpbird 260 . . . . 5 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))
9998expr 460 . . . 4 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ 𝑢𝐾) → ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
10099ralrimiva 3113 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
101 iscnp 21937 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
1021, 2, 72, 101syl3anc 1368 . . . 4 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
103102adantr 484 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
10413, 100, 103mpbir2and 712 . 2 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
10512, 104impbida 800 1 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wfal 1550  wex 1781  wcel 2111  wne 2951  wral 3070  wrex 3071  cdif 3855  cin 3857  wss 3858  c0 4225   cuni 4798   class class class wbr 5032  ccnv 5523  dom cdm 5524  cima 5527  ccom 5528  Fun wfun 6329   Fn wfn 6330  wf 6331  cfv 6335  (class class class)co 7150  1c1 10576  cn 11674  cuz 12282  Topctop 21593  TopOnctopon 21610  clsccl 21718   CnP ccnp 21925  𝑡clm 21926  1stωc1stc 22137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cc 9895  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-pm 8419  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-top 21594  df-topon 21611  df-cld 21719  df-ntr 21720  df-cls 21721  df-cnp 21928  df-lm 21929  df-1stc 22139
This theorem is referenced by:  1stccn  22163  metcnp4  24010
  Copyright terms: Public domain W3C validator