MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stccnp Structured version   Visualization version   GIF version

Theorem 1stccnp 21545
Description: A mapping is continuous at 𝑃 in a first-countable space 𝑋 iff it is sequentially continuous at 𝑃, meaning that the image under 𝐹 of every sequence converging at 𝑃 converges to 𝐹(𝑃). This proof uses ax-cc 9510, but only via 1stcelcls 21544, so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
1stccnp.1 (𝜑𝐽 ∈ 1st𝜔)
1stccnp.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stccnp.3 (𝜑𝐾 ∈ (TopOn‘𝑌))
1stccnp.4 (𝜑𝑃𝑋)
Assertion
Ref Expression
1stccnp (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐽   𝜑,𝑓   𝑓,𝐾   𝑓,𝑋   𝑓,𝑌   𝑃,𝑓

Proof of Theorem 1stccnp
Dummy variables 𝑗 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stccnp.2 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 1stccnp.3 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
31, 2jca 507 . . . 4 (𝜑 → (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)))
4 cnpf2 21334 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
543expa 1147 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
63, 5sylan 575 . . 3 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
7 simprr 789 . . . . . 6 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → 𝑓(⇝𝑡𝐽)𝑃)
8 simplr 785 . . . . . 6 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
97, 8lmcnp 21388 . . . . 5 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))
109ex 401 . . . 4 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))
1110alrimiv 2022 . . 3 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))
126, 11jca 507 . 2 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))))
13 simprl 787 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → 𝐹:𝑋𝑌)
14 fal 1667 . . . . . . . . 9 ¬ ⊥
15 19.29 1972 . . . . . . . . . . . . . 14 ((∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ∃𝑓(((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
16 simprl 787 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)))
17 difss 3899 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∖ (𝐹𝑢)) ⊆ 𝑋
18 fss 6236 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝑋) → 𝑓:ℕ⟶𝑋)
1916, 17, 18sylancl 580 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓:ℕ⟶𝑋)
20 simprr 789 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓(⇝𝑡𝐽)𝑃)
2119, 20jca 507 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃))
22 nnuz 11923 . . . . . . . . . . . . . . . . . . . . . 22 ℕ = (ℤ‘1)
23 simplrr 796 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (𝐹𝑃) ∈ 𝑢)
24 1zzd 11655 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 1 ∈ ℤ)
25 simprr 789 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))
26 simplrl 795 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑢𝐾)
2722, 23, 24, 25, 26lmcvg 21346 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢)
2822r19.2uz 14376 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢 → ∃𝑘 ∈ ℕ ((𝐹𝑓)‘𝑘) ∈ 𝑢)
29 simprll 797 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)))
3029ffnd 6224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑓 Fn ℕ)
31 fvco2 6462 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓 Fn ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
3230, 31sylan 575 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
3332eleq1d 2829 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑓)‘𝑘) ∈ 𝑢 ↔ (𝐹‘(𝑓𝑘)) ∈ 𝑢))
3429ffvelrnda 6549 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ (𝑋 ∖ (𝐹𝑢)))
3534eldifad 3744 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝑋)
36 simplr 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐹:𝑋𝑌)
3736ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → 𝐹:𝑋𝑌)
38 ffn 6223 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
39 elpreima 6527 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 Fn 𝑋 → ((𝑓𝑘) ∈ (𝐹𝑢) ↔ ((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢)))
4037, 38, 393syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) ∈ (𝐹𝑢) ↔ ((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢)))
4134eldifbd 3745 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ¬ (𝑓𝑘) ∈ (𝐹𝑢))
4241pm2.21d 119 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) ∈ (𝐹𝑢) → ⊥))
4340, 42sylbird 251 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢) → ⊥))
4435, 43mpand 686 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑓𝑘)) ∈ 𝑢 → ⊥))
4533, 44sylbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4645rexlimdva 3178 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (∃𝑘 ∈ ℕ ((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4728, 46syl5 34 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4827, 47mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → ⊥)
4948expr 448 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ((𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃) → ⊥))
5021, 49embantd 59 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ⊥))
5150ex 401 . . . . . . . . . . . . . . . . 17 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ⊥)))
5251com23 86 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥)))
5352impd 398 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5453exlimdv 2028 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑓(((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5515, 54syl5 34 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5655exp4b 421 . . . . . . . . . . . 12 ((𝜑𝐹:𝑋𝑌) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))))
5756com23 86 . . . . . . . . . . 11 ((𝜑𝐹:𝑋𝑌) → (∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))))
5857impr 446 . . . . . . . . . 10 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥)))
5958imp 395 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))
6014, 59mtoi 190 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃))
61 1stccnp.1 . . . . . . . . . 10 (𝜑𝐽 ∈ 1st𝜔)
6261ad2antrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ 1st𝜔)
631ad2antrr 717 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ (TopOn‘𝑋))
64 toponuni 20998 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
6563, 64syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑋 = 𝐽)
6617, 65syl5sseq 3813 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽)
67 eqid 2765 . . . . . . . . . 10 𝐽 = 𝐽
68671stcelcls 21544 . . . . . . . . 9 ((𝐽 ∈ 1st𝜔 ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
6962, 66, 68syl2anc 579 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
7060, 69mtbird 316 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))))
71 topontop 20997 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
7263, 71syl 17 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ Top)
73 1stccnp.4 . . . . . . . . . 10 (𝜑𝑃𝑋)
7473ad2antrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑃𝑋)
7574, 65eleqtrd 2846 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑃 𝐽)
7667elcls 21157 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
7772, 66, 75, 76syl3anc 1490 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
7870, 77mtbid 315 . . . . . 6 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
7913ad2antrr 717 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝐹:𝑋𝑌)
8079ffund 6227 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → Fun 𝐹)
81 toponss 21011 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑣𝐽) → 𝑣𝑋)
8263, 81sylan 575 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝑣𝑋)
8379fdmd 6232 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → dom 𝐹 = 𝑋)
8482, 83sseqtr4d 3802 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝑣 ⊆ dom 𝐹)
85 funimass3 6523 . . . . . . . . . . . 12 ((Fun 𝐹𝑣 ⊆ dom 𝐹) → ((𝐹𝑣) ⊆ 𝑢𝑣 ⊆ (𝐹𝑢)))
8680, 84, 85syl2anc 579 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢𝑣 ⊆ (𝐹𝑢)))
87 df-ss 3746 . . . . . . . . . . . . 13 (𝑣𝑋 ↔ (𝑣𝑋) = 𝑣)
8882, 87sylib 209 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → (𝑣𝑋) = 𝑣)
8988sseq1d 3792 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝑣𝑋) ⊆ (𝐹𝑢) ↔ 𝑣 ⊆ (𝐹𝑢)))
9086, 89bitr4d 273 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢 ↔ (𝑣𝑋) ⊆ (𝐹𝑢)))
91 nne 2941 . . . . . . . . . . 11 (¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅ ↔ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) = ∅)
92 inssdif0 4112 . . . . . . . . . . 11 ((𝑣𝑋) ⊆ (𝐹𝑢) ↔ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) = ∅)
9391, 92bitr4i 269 . . . . . . . . . 10 (¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅ ↔ (𝑣𝑋) ⊆ (𝐹𝑢))
9490, 93syl6bbr 280 . . . . . . . . 9 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢 ↔ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
9594anbi2d 622 . . . . . . . 8 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
9695rexbidva 3196 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ ∃𝑣𝐽 (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
97 rexanali 3144 . . . . . . 7 (∃𝑣𝐽 (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅) ↔ ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
9896, 97syl6bb 278 . . . . . 6 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
9978, 98mpbird 248 . . . . 5 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))
10099expr 448 . . . 4 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ 𝑢𝐾) → ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
101100ralrimiva 3113 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
102 iscnp 21321 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
1031, 2, 73, 102syl3anc 1490 . . . 4 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
104103adantr 472 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
10513, 101, 104mpbir2and 704 . 2 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
10612, 105impbida 835 1 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wal 1650   = wceq 1652  wfal 1665  wex 1874  wcel 2155  wne 2937  wral 3055  wrex 3056  cdif 3729  cin 3731  wss 3732  c0 4079   cuni 4594   class class class wbr 4809  ccnv 5276  dom cdm 5277  cima 5280  ccom 5281  Fun wfun 6062   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  1c1 10190  cn 11274  cuz 11886  Topctop 20977  TopOnctopon 20994  clsccl 21102   CnP ccnp 21309  𝑡clm 21310  1st𝜔c1stc 21520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cc 9510  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-top 20978  df-topon 20995  df-cld 21103  df-ntr 21104  df-cls 21105  df-cnp 21312  df-lm 21313  df-1stc 21522
This theorem is referenced by:  1stccn  21546  metcnp4  23387
  Copyright terms: Public domain W3C validator