MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stccnp Structured version   Visualization version   GIF version

Theorem 1stccnp 23471
Description: A mapping is continuous at 𝑃 in a first-countable space 𝑋 iff it is sequentially continuous at 𝑃, meaning that the image under 𝐹 of every sequence converging at 𝑃 converges to 𝐹(𝑃). This proof uses ax-cc 10476, but only via 1stcelcls 23470, so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
1stccnp.1 (𝜑𝐽 ∈ 1stω)
1stccnp.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
1stccnp.3 (𝜑𝐾 ∈ (TopOn‘𝑌))
1stccnp.4 (𝜑𝑃𝑋)
Assertion
Ref Expression
1stccnp (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐽   𝜑,𝑓   𝑓,𝐾   𝑓,𝑋   𝑓,𝑌   𝑃,𝑓

Proof of Theorem 1stccnp
Dummy variables 𝑗 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stccnp.2 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 1stccnp.3 . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
31, 2jca 511 . . . 4 (𝜑 → (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)))
4 cnpf2 23259 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
543expa 1118 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
63, 5sylan 580 . . 3 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋𝑌)
7 simprr 772 . . . . . 6 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → 𝑓(⇝𝑡𝐽)𝑃)
8 simplr 768 . . . . . 6 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
97, 8lmcnp 23313 . . . . 5 (((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ∧ (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃)) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))
109ex 412 . . . 4 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))
1110alrimiv 1926 . . 3 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))
126, 11jca 511 . 2 ((𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))))
13 simprl 770 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → 𝐹:𝑋𝑌)
14 fal 1553 . . . . . . . . 9 ¬ ⊥
15 19.29 1872 . . . . . . . . . . . . . 14 ((∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ∃𝑓(((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
16 simprl 770 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)))
17 difss 4135 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∖ (𝐹𝑢)) ⊆ 𝑋
18 fss 6751 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝑋) → 𝑓:ℕ⟶𝑋)
1916, 17, 18sylancl 586 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓:ℕ⟶𝑋)
20 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → 𝑓(⇝𝑡𝐽)𝑃)
2119, 20jca 511 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → (𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃))
22 nnuz 12922 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
23 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (𝐹𝑃) ∈ 𝑢)
24 1zzd 12650 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 1 ∈ ℤ)
25 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))
26 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑢𝐾)
2722, 23, 24, 25, 26lmcvg 23271 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢)
2822r19.2uz 15391 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢 → ∃𝑘 ∈ ℕ ((𝐹𝑓)‘𝑘) ∈ 𝑢)
29 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)))
3029ffnd 6736 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → 𝑓 Fn ℕ)
31 fvco2 7005 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓 Fn ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
3230, 31sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑓)‘𝑘) = (𝐹‘(𝑓𝑘)))
3332eleq1d 2825 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑓)‘𝑘) ∈ 𝑢 ↔ (𝐹‘(𝑓𝑘)) ∈ 𝑢))
3429ffvelcdmda 7103 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ (𝑋 ∖ (𝐹𝑢)))
3534eldifad 3962 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ 𝑋)
36 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐹:𝑋𝑌)
3736ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → 𝐹:𝑋𝑌)
38 ffn 6735 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
39 elpreima 7077 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 Fn 𝑋 → ((𝑓𝑘) ∈ (𝐹𝑢) ↔ ((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢)))
4037, 38, 393syl 18 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) ∈ (𝐹𝑢) ↔ ((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢)))
4134eldifbd 3963 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ¬ (𝑓𝑘) ∈ (𝐹𝑢))
4241pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝑓𝑘) ∈ (𝐹𝑢) → ⊥))
4340, 42sylbird 260 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝑓𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑓𝑘)) ∈ 𝑢) → ⊥))
4435, 43mpand 695 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑓𝑘)) ∈ 𝑢 → ⊥))
4533, 44sylbid 240 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4645rexlimdva 3154 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (∃𝑘 ∈ ℕ ((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4728, 46syl5 34 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑓)‘𝑘) ∈ 𝑢 → ⊥))
4827, 47mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) ∧ (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃))) → ⊥)
4948expr 456 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ((𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃) → ⊥))
5021, 49embantd 59 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ⊥))
5150ex 412 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → (((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ⊥)))
5251impcomd 411 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5352exlimdv 1932 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑓(((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ (𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5415, 53syl5 34 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋𝑌) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ((∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) ∧ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)) → ⊥))
5554exp4b 430 . . . . . . . . . . . 12 ((𝜑𝐹:𝑋𝑌) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))))
5655com23 86 . . . . . . . . . . 11 ((𝜑𝐹:𝑋𝑌) → (∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))))
5756impr 454 . . . . . . . . . 10 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → ((𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥)))
5857imp 406 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃) → ⊥))
5914, 58mtoi 199 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃))
60 1stccnp.1 . . . . . . . . . 10 (𝜑𝐽 ∈ 1stω)
6160ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ 1stω)
621ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ (TopOn‘𝑋))
63 toponuni 22921 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
6462, 63syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑋 = 𝐽)
6517, 64sseqtrid 4025 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽)
66 eqid 2736 . . . . . . . . . 10 𝐽 = 𝐽
67661stcelcls 23470 . . . . . . . . 9 ((𝐽 ∈ 1stω ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
6861, 65, 67syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∃𝑓(𝑓:ℕ⟶(𝑋 ∖ (𝐹𝑢)) ∧ 𝑓(⇝𝑡𝐽)𝑃)))
6959, 68mtbird 325 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))))
70 topontop 22920 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
7162, 70syl 17 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝐽 ∈ Top)
72 1stccnp.4 . . . . . . . . . 10 (𝜑𝑃𝑋)
7372ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑃𝑋)
7473, 64eleqtrd 2842 . . . . . . . 8 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → 𝑃 𝐽)
7566elcls 23082 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑋 ∖ (𝐹𝑢)) ⊆ 𝐽𝑃 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
7671, 65, 74, 75syl3anc 1372 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (𝑃 ∈ ((cls‘𝐽)‘(𝑋 ∖ (𝐹𝑢))) ↔ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
7769, 76mtbid 324 . . . . . 6 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
7813ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝐹:𝑋𝑌)
7978ffund 6739 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → Fun 𝐹)
80 toponss 22934 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑣𝐽) → 𝑣𝑋)
8162, 80sylan 580 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝑣𝑋)
8278fdmd 6745 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → dom 𝐹 = 𝑋)
8381, 82sseqtrrd 4020 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → 𝑣 ⊆ dom 𝐹)
84 funimass3 7073 . . . . . . . . . . . 12 ((Fun 𝐹𝑣 ⊆ dom 𝐹) → ((𝐹𝑣) ⊆ 𝑢𝑣 ⊆ (𝐹𝑢)))
8579, 83, 84syl2anc 584 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢𝑣 ⊆ (𝐹𝑢)))
86 dfss2 3968 . . . . . . . . . . . . 13 (𝑣𝑋 ↔ (𝑣𝑋) = 𝑣)
8781, 86sylib 218 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → (𝑣𝑋) = 𝑣)
8887sseq1d 4014 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝑣𝑋) ⊆ (𝐹𝑢) ↔ 𝑣 ⊆ (𝐹𝑢)))
8985, 88bitr4d 282 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢 ↔ (𝑣𝑋) ⊆ (𝐹𝑢)))
90 nne 2943 . . . . . . . . . . 11 (¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅ ↔ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) = ∅)
91 inssdif0 4373 . . . . . . . . . . 11 ((𝑣𝑋) ⊆ (𝐹𝑢) ↔ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) = ∅)
9290, 91bitr4i 278 . . . . . . . . . 10 (¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅ ↔ (𝑣𝑋) ⊆ (𝐹𝑢))
9389, 92bitr4di 289 . . . . . . . . 9 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐹𝑣) ⊆ 𝑢 ↔ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
9493anbi2d 630 . . . . . . . 8 ((((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
9594rexbidva 3176 . . . . . . 7 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ ∃𝑣𝐽 (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
96 rexanali 3101 . . . . . . 7 (∃𝑣𝐽 (𝑃𝑣 ∧ ¬ (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅) ↔ ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅))
9795, 96bitrdi 287 . . . . . 6 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢) ↔ ¬ ∀𝑣𝐽 (𝑃𝑣 → (𝑣 ∩ (𝑋 ∖ (𝐹𝑢))) ≠ ∅)))
9877, 97mpbird 257 . . . . 5 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ (𝑢𝐾 ∧ (𝐹𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢))
9998expr 456 . . . 4 (((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) ∧ 𝑢𝐾) → ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
10099ralrimiva 3145 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))
101 iscnp 23246 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
1021, 2, 72, 101syl3anc 1372 . . . 4 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
103102adantr 480 . . 3 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢𝐾 ((𝐹𝑃) ∈ 𝑢 → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐹𝑣) ⊆ 𝑢)))))
10413, 100, 103mpbir2and 713 . 2 ((𝜑 ∧ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))
10512, 104impbida 800 1 (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋𝑓(⇝𝑡𝐽)𝑃) → (𝐹𝑓)(⇝𝑡𝐾)(𝐹𝑃)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wfal 1551  wex 1778  wcel 2107  wne 2939  wral 3060  wrex 3069  cdif 3947  cin 3949  wss 3950  c0 4332   cuni 4906   class class class wbr 5142  ccnv 5683  dom cdm 5684  cima 5687  ccom 5688  Fun wfun 6554   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  1c1 11157  cn 12267  cuz 12879  Topctop 22900  TopOnctopon 22917  clsccl 23027   CnP ccnp 23234  𝑡clm 23235  1stωc1stc 23446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cc 10476  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-top 22901  df-topon 22918  df-cld 23028  df-ntr 23029  df-cls 23030  df-cnp 23237  df-lm 23238  df-1stc 23448
This theorem is referenced by:  1stccn  23472  metcnp4  25345
  Copyright terms: Public domain W3C validator