| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eu5 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of double existential uniqueness (see 2eu4 2653). A mistake sometimes made in the literature is to use ∃!𝑥∃!𝑦 to mean "exactly one 𝑥 and exactly one 𝑦". (For example, see Proposition 7.53 of [TakeutiZaring] p. 53.) It turns out that this is actually a weaker assertion, as can be seen by expanding out the formal definitions. This theorem shows that the erroneous definition can be repaired by conjoining ∀𝑥∃*𝑦𝜑 as an additional condition. The correct definition apparently has never been published. (∃* means "there exists at most one".) (Contributed by NM, 26-Oct-2003.) Avoid ax-13 2375. (Revised by Wolf Lammen, 2-Oct-2023.) |
| Ref | Expression |
|---|---|
| 2eu5 | ⊢ ((∃!𝑥∃!𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2eu1v 2650 | . . 3 ⊢ (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ (∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑))) | |
| 2 | 1 | pm5.32ri 575 | . 2 ⊢ ((∃!𝑥∃!𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) ↔ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ∧ ∀𝑥∃*𝑦𝜑)) |
| 3 | eumo 2576 | . . . . 5 ⊢ (∃!𝑦∃𝑥𝜑 → ∃*𝑦∃𝑥𝜑) | |
| 4 | 2moexv 2625 | . . . . 5 ⊢ (∃*𝑦∃𝑥𝜑 → ∀𝑥∃*𝑦𝜑) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (∃!𝑦∃𝑥𝜑 → ∀𝑥∃*𝑦𝜑) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) → ∀𝑥∃*𝑦𝜑) |
| 7 | 6 | pm4.71i 559 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ∧ ∀𝑥∃*𝑦𝜑)) |
| 8 | 2eu4 2653 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) | |
| 9 | 2, 7, 8 | 3bitr2i 299 | 1 ⊢ ((∃!𝑥∃!𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 ∃*wmo 2536 ∃!weu 2566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-mo 2538 df-eu 2567 |
| This theorem is referenced by: 2reu5lem3 3745 |
| Copyright terms: Public domain | W3C validator |