Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2eu4 | Structured version Visualization version GIF version |
Description: This theorem provides us with a definition of double existential uniqueness ("exactly one 𝑥 and exactly one 𝑦"). Naively one might think (incorrectly) that it could be defined by ∃!𝑥∃!𝑦𝜑. See 2eu1 2652 for a condition under which the naive definition holds and 2exeu 2648 for a one-way implication. See 2eu5 2657 and 2eu8 2660 for alternate definitions. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 14-Sep-2019.) |
Ref | Expression |
---|---|
2eu4 | ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2569 | . . 3 ⊢ (∃!𝑥∃𝑦𝜑 ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑)) | |
2 | df-eu 2569 | . . . 4 ⊢ (∃!𝑦∃𝑥𝜑 ↔ (∃𝑦∃𝑥𝜑 ∧ ∃*𝑦∃𝑥𝜑)) | |
3 | excom 2162 | . . . . 5 ⊢ (∃𝑦∃𝑥𝜑 ↔ ∃𝑥∃𝑦𝜑) | |
4 | 3 | anbi1i 624 | . . . 4 ⊢ ((∃𝑦∃𝑥𝜑 ∧ ∃*𝑦∃𝑥𝜑) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑)) |
5 | 2, 4 | bitri 274 | . . 3 ⊢ (∃!𝑦∃𝑥𝜑 ↔ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑)) |
6 | 1, 5 | anbi12i 627 | . 2 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ ((∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑) ∧ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑))) |
7 | anandi 673 | . 2 ⊢ ((∃𝑥∃𝑦𝜑 ∧ (∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑)) ↔ ((∃𝑥∃𝑦𝜑 ∧ ∃*𝑥∃𝑦𝜑) ∧ (∃𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑))) | |
8 | 2mo2 2649 | . . 3 ⊢ ((∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑) ↔ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | |
9 | 8 | anbi2i 623 | . 2 ⊢ ((∃𝑥∃𝑦𝜑 ∧ (∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑)) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
10 | 6, 7, 9 | 3bitr2i 299 | 1 ⊢ ((∃!𝑥∃𝑦𝜑 ∧ ∃!𝑦∃𝑥𝜑) ↔ (∃𝑥∃𝑦𝜑 ∧ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∃*wmo 2538 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-11 2154 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-mo 2540 df-eu 2569 |
This theorem is referenced by: 2eu5 2657 2eu6 2658 |
Copyright terms: Public domain | W3C validator |