Proof of Theorem 2reu5lem3
Step | Hyp | Ref
| Expression |
1 | | 2reu5lem1 3690 |
. . 3
⊢
(∃!𝑥 ∈
𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑥∃!𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑)) |
2 | | 2reu5lem2 3691 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∃*𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑)) |
3 | 1, 2 | anbi12i 627 |
. 2
⊢
((∃!𝑥 ∈
𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑) ↔ (∃!𝑥∃!𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) ∧ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑))) |
4 | | 2eu5 2657 |
. 2
⊢
((∃!𝑥∃!𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) ∧ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ (∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) ∧ ∃𝑧∃𝑤∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
5 | | 3anass 1094 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
6 | 5 | exbii 1850 |
. . . . . 6
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
7 | | 19.42v 1957 |
. . . . . 6
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑))) |
8 | | df-rex 3070 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐵 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) |
9 | 8 | bicomi 223 |
. . . . . . 7
⊢
(∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 𝜑) |
10 | 9 | anbi2i 623 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
11 | 6, 7, 10 | 3bitri 297 |
. . . . 5
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
12 | 11 | exbii 1850 |
. . . 4
⊢
(∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
13 | | df-rex 3070 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
14 | 12, 13 | bitr4i 277 |
. . 3
⊢
(∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
15 | | 3anan12 1095 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
16 | 15 | imbi1i 350 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ((𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
17 | | impexp 451 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
18 | | impexp 451 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ (𝑥 ∈ 𝐴 → (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
19 | 18 | imbi2i 336 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) ↔ (𝑦 ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) |
20 | 16, 17, 19 | 3bitri 297 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ (𝑦 ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) |
21 | 20 | albii 1822 |
. . . . . . . 8
⊢
(∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑦(𝑦 ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) |
22 | | df-ral 3069 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐵 (𝑥 ∈ 𝐴 → (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) ↔ ∀𝑦(𝑦 ∈ 𝐵 → (𝑥 ∈ 𝐴 → (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))))) |
23 | | r19.21v 3113 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐵 (𝑥 ∈ 𝐴 → (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
24 | 21, 22, 23 | 3bitr2i 299 |
. . . . . . 7
⊢
(∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
25 | 24 | albii 1822 |
. . . . . 6
⊢
(∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
26 | | df-ral 3069 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
27 | 25, 26 | bitr4i 277 |
. . . . 5
⊢
(∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
28 | 27 | exbii 1850 |
. . . 4
⊢
(∃𝑤∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∃𝑤∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
29 | 28 | exbii 1850 |
. . 3
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∃𝑧∃𝑤∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |
30 | 14, 29 | anbi12i 627 |
. 2
⊢
((∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) ∧ ∃𝑧∃𝑤∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧∃𝑤∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |
31 | 3, 4, 30 | 3bitri 297 |
1
⊢
((∃!𝑥 ∈
𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑧∃𝑤∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)))) |