Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0snmgmhm Structured version   Visualization version   GIF version

Theorem c0snmgmhm 45530
Description: The constant mapping to zero is a magma homomorphism from a magma with one element to any monoid. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrhm.b 𝐵 = (Base‘𝑇)
zrrhm.0 0 = (0g𝑆)
zrrhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0snmgmhm ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0snmgmhm
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndmgm 18437 . . . . 5 (𝑆 ∈ Mnd → 𝑆 ∈ Mgm)
21anim1i 616 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
323adant3 1132 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
43ancomd 463 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → (𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm))
5 zrrhm.b . . . . . 6 𝐵 = (Base‘𝑇)
65fvexi 6818 . . . . 5 𝐵 ∈ V
7 hash1snb 14179 . . . . 5 (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ ∃𝑏 𝐵 = {𝑏}))
86, 7ax-mp 5 . . . 4 ((♯‘𝐵) = 1 ↔ ∃𝑏 𝐵 = {𝑏})
9 eqid 2736 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
10 zrrhm.0 . . . . . . . . . . . 12 0 = (0g𝑆)
119, 10mndidcl 18445 . . . . . . . . . . 11 (𝑆 ∈ Mnd → 0 ∈ (Base‘𝑆))
1211adantr 482 . . . . . . . . . 10 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → 0 ∈ (Base‘𝑆))
1312adantr 482 . . . . . . . . 9 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 0 ∈ (Base‘𝑆))
1413adantr 482 . . . . . . . 8 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑥𝐵) → 0 ∈ (Base‘𝑆))
15 zrrhm.h . . . . . . . 8 𝐻 = (𝑥𝐵0 )
1614, 15fmptd 7020 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝐻:𝐵⟶(Base‘𝑆))
1715a1i 11 . . . . . . . . . 10 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝐻 = (𝑥𝐵0 ))
18 eqidd 2737 . . . . . . . . . 10 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑥 = 𝑏) → 0 = 0 )
19 vsnid 4602 . . . . . . . . . . . . 13 𝑏 ∈ {𝑏}
2019a1i 11 . . . . . . . . . . . 12 (𝐵 = {𝑏} → 𝑏 ∈ {𝑏})
21 eleq2 2825 . . . . . . . . . . . 12 (𝐵 = {𝑏} → (𝑏𝐵𝑏 ∈ {𝑏}))
2220, 21mpbird 257 . . . . . . . . . . 11 (𝐵 = {𝑏} → 𝑏𝐵)
2322adantl 483 . . . . . . . . . 10 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝑏𝐵)
2417, 18, 23, 13fvmptd 6914 . . . . . . . . 9 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻𝑏) = 0 )
25 simpr 486 . . . . . . . . . . 11 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → (𝐻𝑏) = 0 )
2625, 25oveq12d 7325 . . . . . . . . . 10 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → ((𝐻𝑏)(+g𝑆)(𝐻𝑏)) = ( 0 (+g𝑆) 0 ))
27 eqid 2736 . . . . . . . . . . . . . . 15 (+g𝑆) = (+g𝑆)
289, 27, 10mndlid 18450 . . . . . . . . . . . . . 14 ((𝑆 ∈ Mnd ∧ 0 ∈ (Base‘𝑆)) → ( 0 (+g𝑆) 0 ) = 0 )
2911, 28mpdan 685 . . . . . . . . . . . . 13 (𝑆 ∈ Mnd → ( 0 (+g𝑆) 0 ) = 0 )
3029adantr 482 . . . . . . . . . . . 12 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → ( 0 (+g𝑆) 0 ) = 0 )
3130adantr 482 . . . . . . . . . . 11 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ( 0 (+g𝑆) 0 ) = 0 )
3231adantr 482 . . . . . . . . . 10 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → ( 0 (+g𝑆) 0 ) = 0 )
33 simpr 486 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → 𝑇 ∈ Mgm)
3433adantr 482 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝑇 ∈ Mgm)
3534adantr 482 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → 𝑇 ∈ Mgm)
36 simpr 486 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → 𝑏𝐵)
37 eqid 2736 . . . . . . . . . . . . . . . . 17 (+g𝑇) = (+g𝑇)
385, 37mgmcl 18374 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ Mgm ∧ 𝑏𝐵𝑏𝐵) → (𝑏(+g𝑇)𝑏) ∈ 𝐵)
3935, 36, 36, 38syl3anc 1371 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → (𝑏(+g𝑇)𝑏) ∈ 𝐵)
40 eleq2 2825 . . . . . . . . . . . . . . . . . 18 (𝐵 = {𝑏} → ((𝑏(+g𝑇)𝑏) ∈ 𝐵 ↔ (𝑏(+g𝑇)𝑏) ∈ {𝑏}))
41 elsni 4582 . . . . . . . . . . . . . . . . . 18 ((𝑏(+g𝑇)𝑏) ∈ {𝑏} → (𝑏(+g𝑇)𝑏) = 𝑏)
4240, 41syl6bi 253 . . . . . . . . . . . . . . . . 17 (𝐵 = {𝑏} → ((𝑏(+g𝑇)𝑏) ∈ 𝐵 → (𝑏(+g𝑇)𝑏) = 𝑏))
4342adantl 483 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ((𝑏(+g𝑇)𝑏) ∈ 𝐵 → (𝑏(+g𝑇)𝑏) = 𝑏))
4443adantr 482 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → ((𝑏(+g𝑇)𝑏) ∈ 𝐵 → (𝑏(+g𝑇)𝑏) = 𝑏))
4539, 44mpd 15 . . . . . . . . . . . . . 14 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → (𝑏(+g𝑇)𝑏) = 𝑏)
4623, 45mpdan 685 . . . . . . . . . . . . 13 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝑏(+g𝑇)𝑏) = 𝑏)
4746fveq2d 6808 . . . . . . . . . . . 12 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘(𝑏(+g𝑇)𝑏)) = (𝐻𝑏))
4847adantr 482 . . . . . . . . . . 11 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → (𝐻‘(𝑏(+g𝑇)𝑏)) = (𝐻𝑏))
4948, 25eqtr2d 2777 . . . . . . . . . 10 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → 0 = (𝐻‘(𝑏(+g𝑇)𝑏)))
5026, 32, 493eqtrrd 2781 . . . . . . . . 9 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏)))
5124, 50mpdan 685 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏)))
52 id 22 . . . . . . . . . . 11 (𝐵 = {𝑏} → 𝐵 = {𝑏})
5352raleqdv 3360 . . . . . . . . . . 11 (𝐵 = {𝑏} → (∀𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ ∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
5452, 53raleqbidv 3348 . . . . . . . . . 10 (𝐵 = {𝑏} → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
5554adantl 483 . . . . . . . . 9 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
56 fvoveq1 7330 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝐻‘(𝑎(+g𝑇)𝑐)) = (𝐻‘(𝑏(+g𝑇)𝑐)))
57 fveq2 6804 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → (𝐻𝑎) = (𝐻𝑏))
5857oveq1d 7322 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑐)))
5956, 58eqeq12d 2752 . . . . . . . . . . 11 (𝑎 = 𝑏 → ((𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑐)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑐))))
60 oveq2 7315 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (𝑏(+g𝑇)𝑐) = (𝑏(+g𝑇)𝑏))
6160fveq2d 6808 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝐻‘(𝑏(+g𝑇)𝑐)) = (𝐻‘(𝑏(+g𝑇)𝑏)))
62 fveq2 6804 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (𝐻𝑐) = (𝐻𝑏))
6362oveq2d 7323 . . . . . . . . . . . 12 (𝑐 = 𝑏 → ((𝐻𝑏)(+g𝑆)(𝐻𝑐)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏)))
6461, 63eqeq12d 2752 . . . . . . . . . . 11 (𝑐 = 𝑏 → ((𝐻‘(𝑏(+g𝑇)𝑐)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏))))
6559, 642ralsng 4616 . . . . . . . . . 10 ((𝑏 ∈ V ∧ 𝑏 ∈ V) → (∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏))))
6665el2v 3445 . . . . . . . . 9 (∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏)))
6755, 66bitrdi 287 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏))))
6851, 67mpbird 257 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))
6916, 68jca 513 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
7069ex 414 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (𝐵 = {𝑏} → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))))
7170exlimdv 1934 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (∃𝑏 𝐵 = {𝑏} → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))))
728, 71syl5bi 242 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → ((♯‘𝐵) = 1 → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))))
73723impia 1117 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
745, 9, 37, 27ismgmhm 45395 . 2 (𝐻 ∈ (𝑇 MgmHom 𝑆) ↔ ((𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))))
754, 73, 74sylanbrc 584 1 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wex 1779  wcel 2104  wral 3062  Vcvv 3437  {csn 4565  cmpt 5164  wf 6454  cfv 6458  (class class class)co 7307  1c1 10918  chash 14090  Basecbs 16957  +gcplusg 17007  0gc0g 17195  Mgmcmgm 18369  Mndcmnd 18430   MgmHom cmgmhm 45389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-oadd 8332  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-dju 9703  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-n0 12280  df-z 12366  df-uz 12629  df-fz 13286  df-hash 14091  df-0g 17197  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-mgmhm 45391
This theorem is referenced by:  c0snmhm  45531
  Copyright terms: Public domain W3C validator