Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0snmgmhm Structured version   Visualization version   GIF version

Theorem c0snmgmhm 44020
Description: The constant mapping to zero is a magma homomorphism from a magma with one element to any monoid. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrhm.b 𝐵 = (Base‘𝑇)
zrrhm.0 0 = (0g𝑆)
zrrhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0snmgmhm ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0snmgmhm
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndmgm 17906 . . . . 5 (𝑆 ∈ Mnd → 𝑆 ∈ Mgm)
21anim1i 614 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
323adant3 1126 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
43ancomd 462 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → (𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm))
5 zrrhm.b . . . . . 6 𝐵 = (Base‘𝑇)
65fvexi 6681 . . . . 5 𝐵 ∈ V
7 hash1snb 13770 . . . . 5 (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ ∃𝑏 𝐵 = {𝑏}))
86, 7ax-mp 5 . . . 4 ((♯‘𝐵) = 1 ↔ ∃𝑏 𝐵 = {𝑏})
9 eqid 2826 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
10 zrrhm.0 . . . . . . . . . . . 12 0 = (0g𝑆)
119, 10mndidcl 17914 . . . . . . . . . . 11 (𝑆 ∈ Mnd → 0 ∈ (Base‘𝑆))
1211adantr 481 . . . . . . . . . 10 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → 0 ∈ (Base‘𝑆))
1312adantr 481 . . . . . . . . 9 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 0 ∈ (Base‘𝑆))
1413adantr 481 . . . . . . . 8 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑥𝐵) → 0 ∈ (Base‘𝑆))
15 zrrhm.h . . . . . . . 8 𝐻 = (𝑥𝐵0 )
1614, 15fmptd 6874 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝐻:𝐵⟶(Base‘𝑆))
1715a1i 11 . . . . . . . . . 10 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝐻 = (𝑥𝐵0 ))
18 eqidd 2827 . . . . . . . . . 10 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑥 = 𝑏) → 0 = 0 )
19 vsnid 4599 . . . . . . . . . . . . 13 𝑏 ∈ {𝑏}
2019a1i 11 . . . . . . . . . . . 12 (𝐵 = {𝑏} → 𝑏 ∈ {𝑏})
21 eleq2 2906 . . . . . . . . . . . 12 (𝐵 = {𝑏} → (𝑏𝐵𝑏 ∈ {𝑏}))
2220, 21mpbird 258 . . . . . . . . . . 11 (𝐵 = {𝑏} → 𝑏𝐵)
2322adantl 482 . . . . . . . . . 10 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝑏𝐵)
2417, 18, 23, 13fvmptd 6771 . . . . . . . . 9 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻𝑏) = 0 )
25 simpr 485 . . . . . . . . . . 11 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → (𝐻𝑏) = 0 )
2625, 25oveq12d 7166 . . . . . . . . . 10 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → ((𝐻𝑏)(+g𝑆)(𝐻𝑏)) = ( 0 (+g𝑆) 0 ))
27 eqid 2826 . . . . . . . . . . . . . . 15 (+g𝑆) = (+g𝑆)
289, 27, 10mndlid 17919 . . . . . . . . . . . . . 14 ((𝑆 ∈ Mnd ∧ 0 ∈ (Base‘𝑆)) → ( 0 (+g𝑆) 0 ) = 0 )
2911, 28mpdan 683 . . . . . . . . . . . . 13 (𝑆 ∈ Mnd → ( 0 (+g𝑆) 0 ) = 0 )
3029adantr 481 . . . . . . . . . . . 12 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → ( 0 (+g𝑆) 0 ) = 0 )
3130adantr 481 . . . . . . . . . . 11 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ( 0 (+g𝑆) 0 ) = 0 )
3231adantr 481 . . . . . . . . . 10 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → ( 0 (+g𝑆) 0 ) = 0 )
33 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → 𝑇 ∈ Mgm)
3433adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝑇 ∈ Mgm)
3534adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → 𝑇 ∈ Mgm)
36 simpr 485 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → 𝑏𝐵)
37 eqid 2826 . . . . . . . . . . . . . . . . 17 (+g𝑇) = (+g𝑇)
385, 37mgmcl 17845 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ Mgm ∧ 𝑏𝐵𝑏𝐵) → (𝑏(+g𝑇)𝑏) ∈ 𝐵)
3935, 36, 36, 38syl3anc 1365 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → (𝑏(+g𝑇)𝑏) ∈ 𝐵)
40 eleq2 2906 . . . . . . . . . . . . . . . . . 18 (𝐵 = {𝑏} → ((𝑏(+g𝑇)𝑏) ∈ 𝐵 ↔ (𝑏(+g𝑇)𝑏) ∈ {𝑏}))
41 elsni 4581 . . . . . . . . . . . . . . . . . 18 ((𝑏(+g𝑇)𝑏) ∈ {𝑏} → (𝑏(+g𝑇)𝑏) = 𝑏)
4240, 41syl6bi 254 . . . . . . . . . . . . . . . . 17 (𝐵 = {𝑏} → ((𝑏(+g𝑇)𝑏) ∈ 𝐵 → (𝑏(+g𝑇)𝑏) = 𝑏))
4342adantl 482 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ((𝑏(+g𝑇)𝑏) ∈ 𝐵 → (𝑏(+g𝑇)𝑏) = 𝑏))
4443adantr 481 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → ((𝑏(+g𝑇)𝑏) ∈ 𝐵 → (𝑏(+g𝑇)𝑏) = 𝑏))
4539, 44mpd 15 . . . . . . . . . . . . . 14 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → (𝑏(+g𝑇)𝑏) = 𝑏)
4623, 45mpdan 683 . . . . . . . . . . . . 13 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝑏(+g𝑇)𝑏) = 𝑏)
4746fveq2d 6671 . . . . . . . . . . . 12 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘(𝑏(+g𝑇)𝑏)) = (𝐻𝑏))
4847adantr 481 . . . . . . . . . . 11 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → (𝐻‘(𝑏(+g𝑇)𝑏)) = (𝐻𝑏))
4948, 25eqtr2d 2862 . . . . . . . . . 10 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → 0 = (𝐻‘(𝑏(+g𝑇)𝑏)))
5026, 32, 493eqtrrd 2866 . . . . . . . . 9 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏)))
5124, 50mpdan 683 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏)))
52 id 22 . . . . . . . . . . 11 (𝐵 = {𝑏} → 𝐵 = {𝑏})
5352raleqdv 3421 . . . . . . . . . . 11 (𝐵 = {𝑏} → (∀𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ ∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
5452, 53raleqbidv 3407 . . . . . . . . . 10 (𝐵 = {𝑏} → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
5554adantl 482 . . . . . . . . 9 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
56 fvoveq1 7171 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝐻‘(𝑎(+g𝑇)𝑐)) = (𝐻‘(𝑏(+g𝑇)𝑐)))
57 fveq2 6667 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → (𝐻𝑎) = (𝐻𝑏))
5857oveq1d 7163 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑐)))
5956, 58eqeq12d 2842 . . . . . . . . . . 11 (𝑎 = 𝑏 → ((𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑐)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑐))))
60 oveq2 7156 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (𝑏(+g𝑇)𝑐) = (𝑏(+g𝑇)𝑏))
6160fveq2d 6671 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝐻‘(𝑏(+g𝑇)𝑐)) = (𝐻‘(𝑏(+g𝑇)𝑏)))
62 fveq2 6667 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (𝐻𝑐) = (𝐻𝑏))
6362oveq2d 7164 . . . . . . . . . . . 12 (𝑐 = 𝑏 → ((𝐻𝑏)(+g𝑆)(𝐻𝑐)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏)))
6461, 63eqeq12d 2842 . . . . . . . . . . 11 (𝑐 = 𝑏 → ((𝐻‘(𝑏(+g𝑇)𝑐)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏))))
6559, 642ralsng 4615 . . . . . . . . . 10 ((𝑏 ∈ V ∧ 𝑏 ∈ V) → (∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏))))
6665el2v 3507 . . . . . . . . 9 (∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏)))
6755, 66syl6bb 288 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏))))
6851, 67mpbird 258 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))
6916, 68jca 512 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
7069ex 413 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (𝐵 = {𝑏} → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))))
7170exlimdv 1927 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (∃𝑏 𝐵 = {𝑏} → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))))
728, 71syl5bi 243 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → ((♯‘𝐵) = 1 → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))))
73723impia 1111 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
745, 9, 37, 27ismgmhm 43885 . 2 (𝐻 ∈ (𝑇 MgmHom 𝑆) ↔ ((𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))))
754, 73, 74sylanbrc 583 1 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wex 1773  wcel 2107  wral 3143  Vcvv 3500  {csn 4564  cmpt 5143  wf 6348  cfv 6352  (class class class)co 7148  1c1 10527  chash 13680  Basecbs 16473  +gcplusg 16555  0gc0g 16703  Mgmcmgm 17840  Mndcmnd 17900   MgmHom cmgmhm 43879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-dju 9319  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-hash 13681  df-0g 16705  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-mgmhm 43881
This theorem is referenced by:  c0snmhm  44021
  Copyright terms: Public domain W3C validator