MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c0snmgmhm Structured version   Visualization version   GIF version

Theorem c0snmgmhm 20381
Description: The constant mapping to zero is a magma homomorphism from a magma with one element to any monoid. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrhm.b 𝐵 = (Base‘𝑇)
zrrhm.0 0 = (0g𝑆)
zrrhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0snmgmhm ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0snmgmhm
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndmgm 18649 . . . . 5 (𝑆 ∈ Mnd → 𝑆 ∈ Mgm)
21anim1i 615 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
323adant3 1132 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
43ancomd 461 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → (𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm))
5 zrrhm.b . . . . . 6 𝐵 = (Base‘𝑇)
65fvexi 6836 . . . . 5 𝐵 ∈ V
7 hash1snb 14326 . . . . 5 (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ ∃𝑏 𝐵 = {𝑏}))
86, 7ax-mp 5 . . . 4 ((♯‘𝐵) = 1 ↔ ∃𝑏 𝐵 = {𝑏})
9 eqid 2731 . . . . . . . . . . . 12 (Base‘𝑆) = (Base‘𝑆)
10 zrrhm.0 . . . . . . . . . . . 12 0 = (0g𝑆)
119, 10mndidcl 18657 . . . . . . . . . . 11 (𝑆 ∈ Mnd → 0 ∈ (Base‘𝑆))
1211adantr 480 . . . . . . . . . 10 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → 0 ∈ (Base‘𝑆))
1312adantr 480 . . . . . . . . 9 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 0 ∈ (Base‘𝑆))
1413adantr 480 . . . . . . . 8 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑥𝐵) → 0 ∈ (Base‘𝑆))
15 zrrhm.h . . . . . . . 8 𝐻 = (𝑥𝐵0 )
1614, 15fmptd 7047 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝐻:𝐵⟶(Base‘𝑆))
1715a1i 11 . . . . . . . . . 10 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝐻 = (𝑥𝐵0 ))
18 eqidd 2732 . . . . . . . . . 10 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑥 = 𝑏) → 0 = 0 )
19 vsnid 4616 . . . . . . . . . . . . 13 𝑏 ∈ {𝑏}
2019a1i 11 . . . . . . . . . . . 12 (𝐵 = {𝑏} → 𝑏 ∈ {𝑏})
21 eleq2 2820 . . . . . . . . . . . 12 (𝐵 = {𝑏} → (𝑏𝐵𝑏 ∈ {𝑏}))
2220, 21mpbird 257 . . . . . . . . . . 11 (𝐵 = {𝑏} → 𝑏𝐵)
2322adantl 481 . . . . . . . . . 10 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝑏𝐵)
2417, 18, 23, 13fvmptd 6936 . . . . . . . . 9 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻𝑏) = 0 )
25 simpr 484 . . . . . . . . . . 11 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → (𝐻𝑏) = 0 )
2625, 25oveq12d 7364 . . . . . . . . . 10 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → ((𝐻𝑏)(+g𝑆)(𝐻𝑏)) = ( 0 (+g𝑆) 0 ))
27 eqid 2731 . . . . . . . . . . . . . . 15 (+g𝑆) = (+g𝑆)
289, 27, 10mndlid 18662 . . . . . . . . . . . . . 14 ((𝑆 ∈ Mnd ∧ 0 ∈ (Base‘𝑆)) → ( 0 (+g𝑆) 0 ) = 0 )
2911, 28mpdan 687 . . . . . . . . . . . . 13 (𝑆 ∈ Mnd → ( 0 (+g𝑆) 0 ) = 0 )
3029adantr 480 . . . . . . . . . . . 12 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → ( 0 (+g𝑆) 0 ) = 0 )
3130adantr 480 . . . . . . . . . . 11 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ( 0 (+g𝑆) 0 ) = 0 )
3231adantr 480 . . . . . . . . . 10 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → ( 0 (+g𝑆) 0 ) = 0 )
33 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → 𝑇 ∈ Mgm)
3433adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝑇 ∈ Mgm)
3534adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → 𝑇 ∈ Mgm)
36 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → 𝑏𝐵)
37 eqid 2731 . . . . . . . . . . . . . . . . 17 (+g𝑇) = (+g𝑇)
385, 37mgmcl 18551 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ Mgm ∧ 𝑏𝐵𝑏𝐵) → (𝑏(+g𝑇)𝑏) ∈ 𝐵)
3935, 36, 36, 38syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → (𝑏(+g𝑇)𝑏) ∈ 𝐵)
40 eleq2 2820 . . . . . . . . . . . . . . . . . 18 (𝐵 = {𝑏} → ((𝑏(+g𝑇)𝑏) ∈ 𝐵 ↔ (𝑏(+g𝑇)𝑏) ∈ {𝑏}))
41 elsni 4593 . . . . . . . . . . . . . . . . . 18 ((𝑏(+g𝑇)𝑏) ∈ {𝑏} → (𝑏(+g𝑇)𝑏) = 𝑏)
4240, 41biimtrdi 253 . . . . . . . . . . . . . . . . 17 (𝐵 = {𝑏} → ((𝑏(+g𝑇)𝑏) ∈ 𝐵 → (𝑏(+g𝑇)𝑏) = 𝑏))
4342adantl 481 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ((𝑏(+g𝑇)𝑏) ∈ 𝐵 → (𝑏(+g𝑇)𝑏) = 𝑏))
4443adantr 480 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → ((𝑏(+g𝑇)𝑏) ∈ 𝐵 → (𝑏(+g𝑇)𝑏) = 𝑏))
4539, 44mpd 15 . . . . . . . . . . . . . 14 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏𝐵) → (𝑏(+g𝑇)𝑏) = 𝑏)
4623, 45mpdan 687 . . . . . . . . . . . . 13 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝑏(+g𝑇)𝑏) = 𝑏)
4746fveq2d 6826 . . . . . . . . . . . 12 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘(𝑏(+g𝑇)𝑏)) = (𝐻𝑏))
4847adantr 480 . . . . . . . . . . 11 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → (𝐻‘(𝑏(+g𝑇)𝑏)) = (𝐻𝑏))
4948, 25eqtr2d 2767 . . . . . . . . . 10 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → 0 = (𝐻‘(𝑏(+g𝑇)𝑏)))
5026, 32, 493eqtrrd 2771 . . . . . . . . 9 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻𝑏) = 0 ) → (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏)))
5124, 50mpdan 687 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏)))
52 id 22 . . . . . . . . . . 11 (𝐵 = {𝑏} → 𝐵 = {𝑏})
5352raleqdv 3292 . . . . . . . . . . 11 (𝐵 = {𝑏} → (∀𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ ∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
5452, 53raleqbidv 3312 . . . . . . . . . 10 (𝐵 = {𝑏} → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
5554adantl 481 . . . . . . . . 9 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
56 fvoveq1 7369 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝐻‘(𝑎(+g𝑇)𝑐)) = (𝐻‘(𝑏(+g𝑇)𝑐)))
57 fveq2 6822 . . . . . . . . . . . . 13 (𝑎 = 𝑏 → (𝐻𝑎) = (𝐻𝑏))
5857oveq1d 7361 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑐)))
5956, 58eqeq12d 2747 . . . . . . . . . . 11 (𝑎 = 𝑏 → ((𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑐)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑐))))
60 oveq2 7354 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (𝑏(+g𝑇)𝑐) = (𝑏(+g𝑇)𝑏))
6160fveq2d 6826 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (𝐻‘(𝑏(+g𝑇)𝑐)) = (𝐻‘(𝑏(+g𝑇)𝑏)))
62 fveq2 6822 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (𝐻𝑐) = (𝐻𝑏))
6362oveq2d 7362 . . . . . . . . . . . 12 (𝑐 = 𝑏 → ((𝐻𝑏)(+g𝑆)(𝐻𝑐)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏)))
6461, 63eqeq12d 2747 . . . . . . . . . . 11 (𝑐 = 𝑏 → ((𝐻‘(𝑏(+g𝑇)𝑐)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏))))
6559, 642ralsng 4631 . . . . . . . . . 10 ((𝑏 ∈ V ∧ 𝑏 ∈ V) → (∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏))))
6665el2v 3443 . . . . . . . . 9 (∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏)))
6755, 66bitrdi 287 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)) ↔ (𝐻‘(𝑏(+g𝑇)𝑏)) = ((𝐻𝑏)(+g𝑆)(𝐻𝑏))))
6851, 67mpbird 257 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))
6916, 68jca 511 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
7069ex 412 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (𝐵 = {𝑏} → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))))
7170exlimdv 1934 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (∃𝑏 𝐵 = {𝑏} → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))))
728, 71biimtrid 242 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → ((♯‘𝐵) = 1 → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))))
73723impia 1117 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐))))
745, 9, 37, 27ismgmhm 18604 . 2 (𝐻 ∈ (𝑇 MgmHom 𝑆) ↔ ((𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(+g𝑇)𝑐)) = ((𝐻𝑎)(+g𝑆)(𝐻𝑐)))))
754, 73, 74sylanbrc 583 1 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (♯‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  {csn 4576  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  1c1 11007  chash 14237  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Mgmcmgm 18546   MgmHom cmgmhm 18598  Mndcmnd 18642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-0g 17345  df-mgm 18548  df-mgmhm 18600  df-sgrp 18627  df-mnd 18643
This theorem is referenced by:  c0snmhm  20382
  Copyright terms: Public domain W3C validator