Step | Hyp | Ref
| Expression |
1 | | mndmgm 18373 |
. . . . 5
⊢ (𝑆 ∈ Mnd → 𝑆 ∈ Mgm) |
2 | 1 | anim1i 614 |
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm)) |
3 | 2 | 3adant3 1130 |
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧
(♯‘𝐵) = 1)
→ (𝑆 ∈ Mgm ∧
𝑇 ∈
Mgm)) |
4 | 3 | ancomd 461 |
. 2
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧
(♯‘𝐵) = 1)
→ (𝑇 ∈ Mgm ∧
𝑆 ∈
Mgm)) |
5 | | zrrhm.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑇) |
6 | 5 | fvexi 6782 |
. . . . 5
⊢ 𝐵 ∈ V |
7 | | hash1snb 14115 |
. . . . 5
⊢ (𝐵 ∈ V →
((♯‘𝐵) = 1
↔ ∃𝑏 𝐵 = {𝑏})) |
8 | 6, 7 | ax-mp 5 |
. . . 4
⊢
((♯‘𝐵) =
1 ↔ ∃𝑏 𝐵 = {𝑏}) |
9 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
(Base‘𝑆) =
(Base‘𝑆) |
10 | | zrrhm.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝑆) |
11 | 9, 10 | mndidcl 18381 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ Mnd → 0 ∈
(Base‘𝑆)) |
12 | 11 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → 0 ∈
(Base‘𝑆)) |
13 | 12 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 0 ∈ (Base‘𝑆)) |
14 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑥 ∈ 𝐵) → 0 ∈ (Base‘𝑆)) |
15 | | zrrhm.h |
. . . . . . . 8
⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
16 | 14, 15 | fmptd 6982 |
. . . . . . 7
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝐻:𝐵⟶(Base‘𝑆)) |
17 | 15 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) |
18 | | eqidd 2740 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑥 = 𝑏) → 0 = 0 ) |
19 | | vsnid 4603 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ {𝑏} |
20 | 19 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝐵 = {𝑏} → 𝑏 ∈ {𝑏}) |
21 | | eleq2 2828 |
. . . . . . . . . . . 12
⊢ (𝐵 = {𝑏} → (𝑏 ∈ 𝐵 ↔ 𝑏 ∈ {𝑏})) |
22 | 20, 21 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑏} → 𝑏 ∈ 𝐵) |
23 | 22 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝑏 ∈ 𝐵) |
24 | 17, 18, 23, 13 | fvmptd 6876 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘𝑏) = 0 ) |
25 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → (𝐻‘𝑏) = 0 ) |
26 | 25, 25 | oveq12d 7286 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏)) = ( 0 (+g‘𝑆) 0 )) |
27 | | eqid 2739 |
. . . . . . . . . . . . . . 15
⊢
(+g‘𝑆) = (+g‘𝑆) |
28 | 9, 27, 10 | mndlid 18386 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ Mnd ∧ 0 ∈
(Base‘𝑆)) → (
0
(+g‘𝑆)
0 ) =
0
) |
29 | 11, 28 | mpdan 683 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ Mnd → ( 0
(+g‘𝑆)
0 ) =
0
) |
30 | 29 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → ( 0
(+g‘𝑆)
0 ) =
0
) |
31 | 30 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ( 0 (+g‘𝑆) 0 ) = 0 ) |
32 | 31 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → ( 0
(+g‘𝑆)
0 ) =
0
) |
33 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → 𝑇 ∈ Mgm) |
34 | 33 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → 𝑇 ∈ Mgm) |
35 | 34 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → 𝑇 ∈ Mgm) |
36 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
37 | | eqid 2739 |
. . . . . . . . . . . . . . . . 17
⊢
(+g‘𝑇) = (+g‘𝑇) |
38 | 5, 37 | mgmcl 18310 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑇 ∈ Mgm ∧ 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑏(+g‘𝑇)𝑏) ∈ 𝐵) |
39 | 35, 36, 36, 38 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → (𝑏(+g‘𝑇)𝑏) ∈ 𝐵) |
40 | | eleq2 2828 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 = {𝑏} → ((𝑏(+g‘𝑇)𝑏) ∈ 𝐵 ↔ (𝑏(+g‘𝑇)𝑏) ∈ {𝑏})) |
41 | | elsni 4583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏(+g‘𝑇)𝑏) ∈ {𝑏} → (𝑏(+g‘𝑇)𝑏) = 𝑏) |
42 | 40, 41 | syl6bi 252 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 = {𝑏} → ((𝑏(+g‘𝑇)𝑏) ∈ 𝐵 → (𝑏(+g‘𝑇)𝑏) = 𝑏)) |
43 | 42 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ((𝑏(+g‘𝑇)𝑏) ∈ 𝐵 → (𝑏(+g‘𝑇)𝑏) = 𝑏)) |
44 | 43 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → ((𝑏(+g‘𝑇)𝑏) ∈ 𝐵 → (𝑏(+g‘𝑇)𝑏) = 𝑏)) |
45 | 39, 44 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ 𝑏 ∈ 𝐵) → (𝑏(+g‘𝑇)𝑏) = 𝑏) |
46 | 23, 45 | mpdan 683 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝑏(+g‘𝑇)𝑏) = 𝑏) |
47 | 46 | fveq2d 6772 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘(𝑏(+g‘𝑇)𝑏)) = (𝐻‘𝑏)) |
48 | 47 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → (𝐻‘(𝑏(+g‘𝑇)𝑏)) = (𝐻‘𝑏)) |
49 | 48, 25 | eqtr2d 2780 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → 0 = (𝐻‘(𝑏(+g‘𝑇)𝑏))) |
50 | 26, 32, 49 | 3eqtrrd 2784 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) ∧ (𝐻‘𝑏) = 0 ) → (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏))) |
51 | 24, 50 | mpdan 683 |
. . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏))) |
52 | | id 22 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑏} → 𝐵 = {𝑏}) |
53 | 52 | raleqdv 3346 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑏} → (∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ ∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
54 | 52, 53 | raleqbidv 3334 |
. . . . . . . . . 10
⊢ (𝐵 = {𝑏} → (∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ ∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
55 | 54 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ ∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
56 | | fvoveq1 7291 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → (𝐻‘(𝑎(+g‘𝑇)𝑐)) = (𝐻‘(𝑏(+g‘𝑇)𝑐))) |
57 | | fveq2 6768 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑏 → (𝐻‘𝑎) = (𝐻‘𝑏)) |
58 | 57 | oveq1d 7283 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑐))) |
59 | 56, 58 | eqeq12d 2755 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → ((𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑐)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑐)))) |
60 | | oveq2 7276 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → (𝑏(+g‘𝑇)𝑐) = (𝑏(+g‘𝑇)𝑏)) |
61 | 60 | fveq2d 6772 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑏 → (𝐻‘(𝑏(+g‘𝑇)𝑐)) = (𝐻‘(𝑏(+g‘𝑇)𝑏))) |
62 | | fveq2 6768 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → (𝐻‘𝑐) = (𝐻‘𝑏)) |
63 | 62 | oveq2d 7284 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑏 → ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑐)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏))) |
64 | 61, 63 | eqeq12d 2755 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑏 → ((𝐻‘(𝑏(+g‘𝑇)𝑐)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏)))) |
65 | 59, 64 | 2ralsng 4617 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ V ∧ 𝑏 ∈ V) → (∀𝑎 ∈ {𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏)))) |
66 | 65 | el2v 3438 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
{𝑏}∀𝑐 ∈ {𝑏} (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏))) |
67 | 55, 66 | bitrdi 286 |
. . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘(𝑏(+g‘𝑇)𝑏)) = ((𝐻‘𝑏)(+g‘𝑆)(𝐻‘𝑏)))) |
68 | 51, 67 | mpbird 256 |
. . . . . . 7
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))) |
69 | 16, 68 | jca 511 |
. . . . . 6
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) ∧ 𝐵 = {𝑏}) → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
70 | 69 | ex 412 |
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) → (𝐵 = {𝑏} → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))))) |
71 | 70 | exlimdv 1939 |
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) →
(∃𝑏 𝐵 = {𝑏} → (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))))) |
72 | 8, 71 | syl5bi 241 |
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm) →
((♯‘𝐵) = 1
→ (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))))) |
73 | 72 | 3impia 1115 |
. 2
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧
(♯‘𝐵) = 1)
→ (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐)))) |
74 | 5, 9, 37, 27 | ismgmhm 45289 |
. 2
⊢ (𝐻 ∈ (𝑇 MgmHom 𝑆) ↔ ((𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm) ∧ (𝐻:𝐵⟶(Base‘𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑇)𝑐)) = ((𝐻‘𝑎)(+g‘𝑆)(𝐻‘𝑐))))) |
75 | 4, 73, 74 | sylanbrc 582 |
1
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧
(♯‘𝐵) = 1)
→ 𝐻 ∈ (𝑇 MgmHom 𝑆)) |