MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1mhm Structured version   Visualization version   GIF version

Theorem mat1mhm 21633
Description: There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
mat1mhm.m 𝑀 = (mulGrp‘𝑅)
mat1mhm.n 𝑁 = (mulGrp‘𝐴)
Assertion
Ref Expression
mat1mhm ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑀 MndHom 𝑁))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝐵   𝑥,𝐴   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁

Proof of Theorem mat1mhm
Dummy variables 𝑖 𝑗 𝑤 𝑦 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat1mhm.m . . . 4 𝑀 = (mulGrp‘𝑅)
21ringmgp 19789 . . 3 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
32adantr 481 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑀 ∈ Mnd)
4 snfi 8834 . . . 4 {𝐸} ∈ Fin
5 simpl 483 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
6 mat1rhmval.a . . . . 5 𝐴 = ({𝐸} Mat 𝑅)
76matring 21592 . . . 4 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
84, 5, 7sylancr 587 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Ring)
9 mat1mhm.n . . . 4 𝑁 = (mulGrp‘𝐴)
109ringmgp 19789 . . 3 (𝐴 ∈ Ring → 𝑁 ∈ Mnd)
118, 10syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑁 ∈ Mnd)
12 mat1rhmval.k . . . 4 𝐾 = (Base‘𝑅)
13 mat1rhmval.b . . . 4 𝐵 = (Base‘𝐴)
14 mat1rhmval.o . . . 4 𝑂 = ⟨𝐸, 𝐸
15 mat1rhmval.f . . . 4 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
1612, 6, 13, 14, 15mat1f 21631 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾𝐵)
17 ringmnd 19793 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1817adantr 481 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Mnd)
1918adantr 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑅 ∈ Mnd)
20 simpr 485 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
2120adantr 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐸𝑉)
22 simpll 764 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑅 ∈ Ring)
23 eqid 2738 . . . . . . . . . . 11 (Base‘𝐴) = (Base‘𝐴)
24 snidg 4595 . . . . . . . . . . . 12 (𝐸𝑉𝐸 ∈ {𝐸})
2524ad2antlr 724 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐸 ∈ {𝐸})
26 simprl 768 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑤𝐾)
2712, 6, 23, 14, 15mat1rhmcl 21630 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐹𝑤) ∈ (Base‘𝐴))
2822, 21, 26, 27syl3anc 1370 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑤) ∈ (Base‘𝐴))
296, 12, 23, 25, 25, 28matecld 21575 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑤)𝐸) ∈ 𝐾)
30 simprr 770 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑦𝐾)
3112, 6, 23, 14, 15mat1rhmcl 21630 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐹𝑦) ∈ (Base‘𝐴))
3222, 21, 30, 31syl3anc 1370 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑦) ∈ (Base‘𝐴))
336, 12, 23, 25, 25, 32matecld 21575 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑦)𝐸) ∈ 𝐾)
34 eqid 2738 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3512, 34ringcl 19800 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐸(𝐹𝑤)𝐸) ∈ 𝐾 ∧ (𝐸(𝐹𝑦)𝐸) ∈ 𝐾) → ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)) ∈ 𝐾)
3622, 29, 33, 35syl3anc 1370 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)) ∈ 𝐾)
37 oveq2 7283 . . . . . . . . . . 11 (𝑒 = 𝐸 → (𝐸(𝐹𝑤)𝑒) = (𝐸(𝐹𝑤)𝐸))
38 oveq1 7282 . . . . . . . . . . 11 (𝑒 = 𝐸 → (𝑒(𝐹𝑦)𝐸) = (𝐸(𝐹𝑦)𝐸))
3937, 38oveq12d 7293 . . . . . . . . . 10 (𝑒 = 𝐸 → ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)) = ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)))
4039adantl 482 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) ∧ 𝑒 = 𝐸) → ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)) = ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)))
4112, 19, 21, 36, 40gsumsnd 19553 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))) = ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)))
4212, 6, 13, 14, 15mat1rhmelval 21629 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
4322, 21, 26, 42syl3anc 1370 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
4412, 6, 13, 14, 15mat1rhmelval 21629 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
4522, 21, 30, 44syl3anc 1370 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
4643, 45oveq12d 7293 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)) = (𝑤(.r𝑅)𝑦))
4741, 46eqtrd 2778 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))) = (𝑤(.r𝑅)𝑦))
4812, 6, 13, 14, 15mat1rhmcl 21630 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐹𝑤) ∈ 𝐵)
4922, 21, 26, 48syl3anc 1370 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑤) ∈ 𝐵)
5012, 6, 13, 14, 15mat1rhmcl 21630 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐹𝑦) ∈ 𝐵)
5122, 21, 30, 50syl3anc 1370 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑦) ∈ 𝐵)
5249, 51jca 512 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵))
5324, 24jca 512 . . . . . . . . 9 (𝐸𝑉 → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
5453ad2antlr 724 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
55 eqid 2738 . . . . . . . . 9 (.r𝐴) = (.r𝐴)
566, 13, 55matmulcell 21594 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) ∧ (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸})) → (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸) = (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))))
5722, 52, 54, 56syl3anc 1370 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸) = (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))))
5812, 34ringcl 19800 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑤𝐾𝑦𝐾) → (𝑤(.r𝑅)𝑦) ∈ 𝐾)
5922, 26, 30, 58syl3anc 1370 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑤(.r𝑅)𝑦) ∈ 𝐾)
6012, 6, 13, 14, 15mat1rhmelval 21629 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(.r𝑅)𝑦) ∈ 𝐾) → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝑤(.r𝑅)𝑦))
6122, 21, 59, 60syl3anc 1370 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝑤(.r𝑅)𝑦))
6247, 57, 613eqtr4rd 2789 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸))
63 oveq1 7282 . . . . . . . . . 10 (𝑖 = 𝐸 → (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗))
64 oveq1 7282 . . . . . . . . . 10 (𝑖 = 𝐸 → (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗))
6563, 64eqeq12d 2754 . . . . . . . . 9 (𝑖 = 𝐸 → ((𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗)))
66 oveq2 7283 . . . . . . . . . 10 (𝑗 = 𝐸 → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸))
67 oveq2 7283 . . . . . . . . . 10 (𝑗 = 𝐸 → (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸))
6866, 67eqeq12d 2754 . . . . . . . . 9 (𝑗 = 𝐸 → ((𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
6965, 682ralsng 4612 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
7020, 69sylancom 588 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
7170adantr 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
7262, 71mpbird 256 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗))
7312, 6, 13, 14, 15mat1rhmcl 21630 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(.r𝑅)𝑦) ∈ 𝐾) → (𝐹‘(𝑤(.r𝑅)𝑦)) ∈ 𝐵)
7422, 21, 59, 73syl3anc 1370 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(.r𝑅)𝑦)) ∈ 𝐵)
758adantr 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐴 ∈ Ring)
7613, 55ringcl 19800 . . . . . . 7 ((𝐴 ∈ Ring ∧ (𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∈ 𝐵)
7775, 49, 51, 76syl3anc 1370 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∈ 𝐵)
786, 13eqmat 21573 . . . . . 6 (((𝐹‘(𝑤(.r𝑅)𝑦)) ∈ 𝐵 ∧ ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗)))
7974, 77, 78syl2anc 584 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗)))
8072, 79mpbird 256 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)))
8180ralrimivva 3123 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ∀𝑤𝐾𝑦𝐾 (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)))
82 eqid 2738 . . . . . . 7 (1r𝑅) = (1r𝑅)
8312, 82ringidcl 19807 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
8483adantr 481 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (1r𝑅) ∈ 𝐾)
8512, 6, 13, 14, 15mat1rhmval 21628 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (1r𝑅) ∈ 𝐾) → (𝐹‘(1r𝑅)) = {⟨𝑂, (1r𝑅)⟩})
8684, 85mpd3an3 1461 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹‘(1r𝑅)) = {⟨𝑂, (1r𝑅)⟩})
876, 12, 14mat1dimid 21623 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (1r𝐴) = {⟨𝑂, (1r𝑅)⟩})
8886, 87eqtr4d 2781 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹‘(1r𝑅)) = (1r𝐴))
8916, 81, 883jca 1127 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹:𝐾𝐵 ∧ ∀𝑤𝐾𝑦𝐾 (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∧ (𝐹‘(1r𝑅)) = (1r𝐴)))
901, 12mgpbas 19726 . . 3 𝐾 = (Base‘𝑀)
919, 13mgpbas 19726 . . 3 𝐵 = (Base‘𝑁)
921, 34mgpplusg 19724 . . 3 (.r𝑅) = (+g𝑀)
939, 55mgpplusg 19724 . . 3 (.r𝐴) = (+g𝑁)
941, 82ringidval 19739 . . 3 (1r𝑅) = (0g𝑀)
95 eqid 2738 . . . 4 (1r𝐴) = (1r𝐴)
969, 95ringidval 19739 . . 3 (1r𝐴) = (0g𝑁)
9790, 91, 92, 93, 94, 96ismhm 18432 . 2 (𝐹 ∈ (𝑀 MndHom 𝑁) ↔ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝐹:𝐾𝐵 ∧ ∀𝑤𝐾𝑦𝐾 (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∧ (𝐹‘(1r𝑅)) = (1r𝐴))))
983, 11, 89, 97syl21anbrc 1343 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑀 MndHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {csn 4561  cop 4567  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  Basecbs 16912  .rcmulr 16963   Σg cgsu 17151  Mndcmnd 18385   MndHom cmhm 18428  mulGrpcmgp 19720  1rcur 19737  Ringcrg 19783   Mat cmat 21554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-mamu 21533  df-mat 21555
This theorem is referenced by:  mat1rhm  21634
  Copyright terms: Public domain W3C validator