MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1mhm Structured version   Visualization version   GIF version

Theorem mat1mhm 20501
Description: There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
mat1mhm.m 𝑀 = (mulGrp‘𝑅)
mat1mhm.n 𝑁 = (mulGrp‘𝐴)
Assertion
Ref Expression
mat1mhm ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑀 MndHom 𝑁))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝐵   𝑥,𝐴   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁

Proof of Theorem mat1mhm
Dummy variables 𝑖 𝑗 𝑤 𝑦 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat1mhm.m . . . . 5 𝑀 = (mulGrp‘𝑅)
21ringmgp 18754 . . . 4 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
32adantr 466 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑀 ∈ Mnd)
4 snfi 8192 . . . . 5 {𝐸} ∈ Fin
5 simpl 468 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
6 mat1rhmval.a . . . . . 6 𝐴 = ({𝐸} Mat 𝑅)
76matring 20459 . . . . 5 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
84, 5, 7sylancr 575 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Ring)
9 mat1mhm.n . . . . 5 𝑁 = (mulGrp‘𝐴)
109ringmgp 18754 . . . 4 (𝐴 ∈ Ring → 𝑁 ∈ Mnd)
118, 10syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑁 ∈ Mnd)
123, 11jca 501 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd))
13 mat1rhmval.k . . . 4 𝐾 = (Base‘𝑅)
14 mat1rhmval.b . . . 4 𝐵 = (Base‘𝐴)
15 mat1rhmval.o . . . 4 𝑂 = ⟨𝐸, 𝐸
16 mat1rhmval.f . . . 4 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
1713, 6, 14, 15, 16mat1f 20499 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾𝐵)
18 ringmnd 18757 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1918adantr 466 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Mnd)
2019adantr 466 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑅 ∈ Mnd)
21 simpr 471 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
2221adantr 466 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐸𝑉)
23 simpll 750 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑅 ∈ Ring)
24 eqid 2771 . . . . . . . . . . 11 (Base‘𝐴) = (Base‘𝐴)
25 snidg 4345 . . . . . . . . . . . 12 (𝐸𝑉𝐸 ∈ {𝐸})
2625ad2antlr 706 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐸 ∈ {𝐸})
27 simprl 754 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑤𝐾)
2813, 6, 24, 15, 16mat1rhmcl 20498 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐹𝑤) ∈ (Base‘𝐴))
2923, 22, 27, 28syl3anc 1476 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑤) ∈ (Base‘𝐴))
306, 13, 24, 26, 26, 29matecld 20442 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑤)𝐸) ∈ 𝐾)
31 simprr 756 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑦𝐾)
3213, 6, 24, 15, 16mat1rhmcl 20498 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐹𝑦) ∈ (Base‘𝐴))
3323, 22, 31, 32syl3anc 1476 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑦) ∈ (Base‘𝐴))
346, 13, 24, 26, 26, 33matecld 20442 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑦)𝐸) ∈ 𝐾)
35 eqid 2771 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3613, 35ringcl 18762 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐸(𝐹𝑤)𝐸) ∈ 𝐾 ∧ (𝐸(𝐹𝑦)𝐸) ∈ 𝐾) → ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)) ∈ 𝐾)
3723, 30, 34, 36syl3anc 1476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)) ∈ 𝐾)
38 oveq2 6799 . . . . . . . . . . 11 (𝑒 = 𝐸 → (𝐸(𝐹𝑤)𝑒) = (𝐸(𝐹𝑤)𝐸))
39 oveq1 6798 . . . . . . . . . . 11 (𝑒 = 𝐸 → (𝑒(𝐹𝑦)𝐸) = (𝐸(𝐹𝑦)𝐸))
4038, 39oveq12d 6809 . . . . . . . . . 10 (𝑒 = 𝐸 → ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)) = ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)))
4140adantl 467 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) ∧ 𝑒 = 𝐸) → ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)) = ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)))
4213, 20, 22, 37, 41gsumsnd 18552 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))) = ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)))
4313, 6, 14, 15, 16mat1rhmelval 20497 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
4423, 22, 27, 43syl3anc 1476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
4513, 6, 14, 15, 16mat1rhmelval 20497 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
4623, 22, 31, 45syl3anc 1476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
4744, 46oveq12d 6809 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)) = (𝑤(.r𝑅)𝑦))
4842, 47eqtrd 2805 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))) = (𝑤(.r𝑅)𝑦))
4913, 6, 14, 15, 16mat1rhmcl 20498 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐹𝑤) ∈ 𝐵)
5023, 22, 27, 49syl3anc 1476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑤) ∈ 𝐵)
5113, 6, 14, 15, 16mat1rhmcl 20498 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐹𝑦) ∈ 𝐵)
5223, 22, 31, 51syl3anc 1476 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑦) ∈ 𝐵)
5350, 52jca 501 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵))
5425, 25jca 501 . . . . . . . . 9 (𝐸𝑉 → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
5554ad2antlr 706 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
56 eqid 2771 . . . . . . . . 9 (.r𝐴) = (.r𝐴)
576, 14, 56matmulcell 20461 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) ∧ (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸})) → (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸) = (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))))
5823, 53, 55, 57syl3anc 1476 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸) = (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))))
5913, 35ringcl 18762 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑤𝐾𝑦𝐾) → (𝑤(.r𝑅)𝑦) ∈ 𝐾)
6023, 27, 31, 59syl3anc 1476 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑤(.r𝑅)𝑦) ∈ 𝐾)
6113, 6, 14, 15, 16mat1rhmelval 20497 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(.r𝑅)𝑦) ∈ 𝐾) → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝑤(.r𝑅)𝑦))
6223, 22, 60, 61syl3anc 1476 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝑤(.r𝑅)𝑦))
6348, 58, 623eqtr4rd 2816 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸))
64 oveq1 6798 . . . . . . . . . 10 (𝑖 = 𝐸 → (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗))
65 oveq1 6798 . . . . . . . . . 10 (𝑖 = 𝐸 → (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗))
6664, 65eqeq12d 2786 . . . . . . . . 9 (𝑖 = 𝐸 → ((𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗)))
67 oveq2 6799 . . . . . . . . . 10 (𝑗 = 𝐸 → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸))
68 oveq2 6799 . . . . . . . . . 10 (𝑗 = 𝐸 → (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸))
6967, 68eqeq12d 2786 . . . . . . . . 9 (𝑗 = 𝐸 → ((𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
7066, 692ralsng 4358 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
7121, 70sylancom 576 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
7271adantr 466 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
7363, 72mpbird 247 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗))
7413, 6, 14, 15, 16mat1rhmcl 20498 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(.r𝑅)𝑦) ∈ 𝐾) → (𝐹‘(𝑤(.r𝑅)𝑦)) ∈ 𝐵)
7523, 22, 60, 74syl3anc 1476 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(.r𝑅)𝑦)) ∈ 𝐵)
768adantr 466 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐴 ∈ Ring)
7714, 56ringcl 18762 . . . . . . 7 ((𝐴 ∈ Ring ∧ (𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∈ 𝐵)
7876, 50, 52, 77syl3anc 1476 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∈ 𝐵)
796, 14eqmat 20440 . . . . . 6 (((𝐹‘(𝑤(.r𝑅)𝑦)) ∈ 𝐵 ∧ ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗)))
8075, 78, 79syl2anc 573 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗)))
8173, 80mpbird 247 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)))
8281ralrimivva 3120 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ∀𝑤𝐾𝑦𝐾 (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)))
83 eqid 2771 . . . . . . 7 (1r𝑅) = (1r𝑅)
8413, 83ringidcl 18769 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
8584adantr 466 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (1r𝑅) ∈ 𝐾)
8613, 6, 14, 15, 16mat1rhmval 20496 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (1r𝑅) ∈ 𝐾) → (𝐹‘(1r𝑅)) = {⟨𝑂, (1r𝑅)⟩})
8785, 86mpd3an3 1573 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹‘(1r𝑅)) = {⟨𝑂, (1r𝑅)⟩})
886, 13, 15mat1dimid 20491 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (1r𝐴) = {⟨𝑂, (1r𝑅)⟩})
8987, 88eqtr4d 2808 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹‘(1r𝑅)) = (1r𝐴))
9017, 82, 893jca 1122 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹:𝐾𝐵 ∧ ∀𝑤𝐾𝑦𝐾 (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∧ (𝐹‘(1r𝑅)) = (1r𝐴)))
911, 13mgpbas 18696 . . 3 𝐾 = (Base‘𝑀)
929, 14mgpbas 18696 . . 3 𝐵 = (Base‘𝑁)
931, 35mgpplusg 18694 . . 3 (.r𝑅) = (+g𝑀)
949, 56mgpplusg 18694 . . 3 (.r𝐴) = (+g𝑁)
951, 83ringidval 18704 . . 3 (1r𝑅) = (0g𝑀)
96 eqid 2771 . . . 4 (1r𝐴) = (1r𝐴)
979, 96ringidval 18704 . . 3 (1r𝐴) = (0g𝑁)
9891, 92, 93, 94, 95, 97ismhm 17538 . 2 (𝐹 ∈ (𝑀 MndHom 𝑁) ↔ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝐹:𝐾𝐵 ∧ ∀𝑤𝐾𝑦𝐾 (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∧ (𝐹‘(1r𝑅)) = (1r𝐴))))
9912, 90, 98sylanbrc 572 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑀 MndHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  {csn 4316  cop 4322  cmpt 4863  wf 6025  cfv 6029  (class class class)co 6791  Fincfn 8107  Basecbs 16057  .rcmulr 16143   Σg cgsu 16302  Mndcmnd 17495   MndHom cmhm 17534  mulGrpcmgp 18690  1rcur 18702  Ringcrg 18748   Mat cmat 20423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-ot 4325  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-map 8009  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-sup 8502  df-oi 8569  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-fz 12527  df-fzo 12667  df-seq 13002  df-hash 13315  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-hom 16167  df-cco 16168  df-0g 16303  df-gsum 16304  df-prds 16309  df-pws 16311  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-ghm 17859  df-cntz 17950  df-cmn 18395  df-abl 18396  df-mgp 18691  df-ur 18703  df-ring 18750  df-subrg 18981  df-lmod 19068  df-lss 19136  df-sra 19380  df-rgmod 19381  df-dsmm 20286  df-frlm 20301  df-mamu 20400  df-mat 20424
This theorem is referenced by:  mat1rhm  20502
  Copyright terms: Public domain W3C validator