MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1mhm Structured version   Visualization version   GIF version

Theorem mat1mhm 22490
Description: There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
mat1mhm.m 𝑀 = (mulGrp‘𝑅)
mat1mhm.n 𝑁 = (mulGrp‘𝐴)
Assertion
Ref Expression
mat1mhm ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑀 MndHom 𝑁))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝐵   𝑥,𝐴   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁

Proof of Theorem mat1mhm
Dummy variables 𝑖 𝑗 𝑤 𝑦 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat1mhm.m . . . 4 𝑀 = (mulGrp‘𝑅)
21ringmgp 20236 . . 3 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
32adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑀 ∈ Mnd)
4 snfi 9083 . . . 4 {𝐸} ∈ Fin
5 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
6 mat1rhmval.a . . . . 5 𝐴 = ({𝐸} Mat 𝑅)
76matring 22449 . . . 4 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
84, 5, 7sylancr 587 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Ring)
9 mat1mhm.n . . . 4 𝑁 = (mulGrp‘𝐴)
109ringmgp 20236 . . 3 (𝐴 ∈ Ring → 𝑁 ∈ Mnd)
118, 10syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑁 ∈ Mnd)
12 mat1rhmval.k . . . 4 𝐾 = (Base‘𝑅)
13 mat1rhmval.b . . . 4 𝐵 = (Base‘𝐴)
14 mat1rhmval.o . . . 4 𝑂 = ⟨𝐸, 𝐸
15 mat1rhmval.f . . . 4 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
1612, 6, 13, 14, 15mat1f 22488 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾𝐵)
17 ringmnd 20240 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1817adantr 480 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Mnd)
1918adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑅 ∈ Mnd)
20 simpr 484 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
2120adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐸𝑉)
22 simpll 767 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑅 ∈ Ring)
23 eqid 2737 . . . . . . . . . . 11 (Base‘𝐴) = (Base‘𝐴)
24 snidg 4660 . . . . . . . . . . . 12 (𝐸𝑉𝐸 ∈ {𝐸})
2524ad2antlr 727 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐸 ∈ {𝐸})
26 simprl 771 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑤𝐾)
2712, 6, 23, 14, 15mat1rhmcl 22487 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐹𝑤) ∈ (Base‘𝐴))
2822, 21, 26, 27syl3anc 1373 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑤) ∈ (Base‘𝐴))
296, 12, 23, 25, 25, 28matecld 22432 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑤)𝐸) ∈ 𝐾)
30 simprr 773 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑦𝐾)
3112, 6, 23, 14, 15mat1rhmcl 22487 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐹𝑦) ∈ (Base‘𝐴))
3222, 21, 30, 31syl3anc 1373 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑦) ∈ (Base‘𝐴))
336, 12, 23, 25, 25, 32matecld 22432 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑦)𝐸) ∈ 𝐾)
34 eqid 2737 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3512, 34ringcl 20247 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐸(𝐹𝑤)𝐸) ∈ 𝐾 ∧ (𝐸(𝐹𝑦)𝐸) ∈ 𝐾) → ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)) ∈ 𝐾)
3622, 29, 33, 35syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)) ∈ 𝐾)
37 oveq2 7439 . . . . . . . . . . 11 (𝑒 = 𝐸 → (𝐸(𝐹𝑤)𝑒) = (𝐸(𝐹𝑤)𝐸))
38 oveq1 7438 . . . . . . . . . . 11 (𝑒 = 𝐸 → (𝑒(𝐹𝑦)𝐸) = (𝐸(𝐹𝑦)𝐸))
3937, 38oveq12d 7449 . . . . . . . . . 10 (𝑒 = 𝐸 → ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)) = ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)))
4039adantl 481 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) ∧ 𝑒 = 𝐸) → ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)) = ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)))
4112, 19, 21, 36, 40gsumsnd 19970 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))) = ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)))
4212, 6, 13, 14, 15mat1rhmelval 22486 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
4322, 21, 26, 42syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
4412, 6, 13, 14, 15mat1rhmelval 22486 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
4522, 21, 30, 44syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
4643, 45oveq12d 7449 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)) = (𝑤(.r𝑅)𝑦))
4741, 46eqtrd 2777 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))) = (𝑤(.r𝑅)𝑦))
4812, 6, 13, 14, 15mat1rhmcl 22487 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐹𝑤) ∈ 𝐵)
4922, 21, 26, 48syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑤) ∈ 𝐵)
5012, 6, 13, 14, 15mat1rhmcl 22487 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐹𝑦) ∈ 𝐵)
5122, 21, 30, 50syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑦) ∈ 𝐵)
5249, 51jca 511 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵))
5324, 24jca 511 . . . . . . . . 9 (𝐸𝑉 → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
5453ad2antlr 727 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
55 eqid 2737 . . . . . . . . 9 (.r𝐴) = (.r𝐴)
566, 13, 55matmulcell 22451 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) ∧ (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸})) → (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸) = (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))))
5722, 52, 54, 56syl3anc 1373 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸) = (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))))
5812, 34ringcl 20247 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑤𝐾𝑦𝐾) → (𝑤(.r𝑅)𝑦) ∈ 𝐾)
5922, 26, 30, 58syl3anc 1373 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑤(.r𝑅)𝑦) ∈ 𝐾)
6012, 6, 13, 14, 15mat1rhmelval 22486 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(.r𝑅)𝑦) ∈ 𝐾) → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝑤(.r𝑅)𝑦))
6122, 21, 59, 60syl3anc 1373 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝑤(.r𝑅)𝑦))
6247, 57, 613eqtr4rd 2788 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸))
63 oveq1 7438 . . . . . . . . . 10 (𝑖 = 𝐸 → (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗))
64 oveq1 7438 . . . . . . . . . 10 (𝑖 = 𝐸 → (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗))
6563, 64eqeq12d 2753 . . . . . . . . 9 (𝑖 = 𝐸 → ((𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗)))
66 oveq2 7439 . . . . . . . . . 10 (𝑗 = 𝐸 → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸))
67 oveq2 7439 . . . . . . . . . 10 (𝑗 = 𝐸 → (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸))
6866, 67eqeq12d 2753 . . . . . . . . 9 (𝑗 = 𝐸 → ((𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
6965, 682ralsng 4678 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
7020, 69sylancom 588 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
7170adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
7262, 71mpbird 257 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗))
7312, 6, 13, 14, 15mat1rhmcl 22487 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(.r𝑅)𝑦) ∈ 𝐾) → (𝐹‘(𝑤(.r𝑅)𝑦)) ∈ 𝐵)
7422, 21, 59, 73syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(.r𝑅)𝑦)) ∈ 𝐵)
758adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐴 ∈ Ring)
7613, 55ringcl 20247 . . . . . . 7 ((𝐴 ∈ Ring ∧ (𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∈ 𝐵)
7775, 49, 51, 76syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∈ 𝐵)
786, 13eqmat 22430 . . . . . 6 (((𝐹‘(𝑤(.r𝑅)𝑦)) ∈ 𝐵 ∧ ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗)))
7974, 77, 78syl2anc 584 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗)))
8072, 79mpbird 257 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)))
8180ralrimivva 3202 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ∀𝑤𝐾𝑦𝐾 (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)))
82 eqid 2737 . . . . . . 7 (1r𝑅) = (1r𝑅)
8312, 82ringidcl 20262 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
8483adantr 480 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (1r𝑅) ∈ 𝐾)
8512, 6, 13, 14, 15mat1rhmval 22485 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (1r𝑅) ∈ 𝐾) → (𝐹‘(1r𝑅)) = {⟨𝑂, (1r𝑅)⟩})
8684, 85mpd3an3 1464 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹‘(1r𝑅)) = {⟨𝑂, (1r𝑅)⟩})
876, 12, 14mat1dimid 22480 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (1r𝐴) = {⟨𝑂, (1r𝑅)⟩})
8886, 87eqtr4d 2780 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹‘(1r𝑅)) = (1r𝐴))
8916, 81, 883jca 1129 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹:𝐾𝐵 ∧ ∀𝑤𝐾𝑦𝐾 (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∧ (𝐹‘(1r𝑅)) = (1r𝐴)))
901, 12mgpbas 20142 . . 3 𝐾 = (Base‘𝑀)
919, 13mgpbas 20142 . . 3 𝐵 = (Base‘𝑁)
921, 34mgpplusg 20141 . . 3 (.r𝑅) = (+g𝑀)
939, 55mgpplusg 20141 . . 3 (.r𝐴) = (+g𝑁)
941, 82ringidval 20180 . . 3 (1r𝑅) = (0g𝑀)
95 eqid 2737 . . . 4 (1r𝐴) = (1r𝐴)
969, 95ringidval 20180 . . 3 (1r𝐴) = (0g𝑁)
9790, 91, 92, 93, 94, 96ismhm 18798 . 2 (𝐹 ∈ (𝑀 MndHom 𝑁) ↔ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝐹:𝐾𝐵 ∧ ∀𝑤𝐾𝑦𝐾 (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∧ (𝐹‘(1r𝑅)) = (1r𝐴))))
983, 11, 89, 97syl21anbrc 1345 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑀 MndHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  {csn 4626  cop 4632  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  Basecbs 17247  .rcmulr 17298   Σg cgsu 17485  Mndcmnd 18747   MndHom cmhm 18794  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230   Mat cmat 22411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-subrg 20570  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767  df-mamu 22395  df-mat 22412
This theorem is referenced by:  mat1rhm  22491
  Copyright terms: Public domain W3C validator