Step | Hyp | Ref
| Expression |
1 | | mat1mhm.m |
. . . 4
⊢ 𝑀 = (mulGrp‘𝑅) |
2 | 1 | ringmgp 19372 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
3 | 2 | adantr 485 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑀 ∈ Mnd) |
4 | | snfi 8615 |
. . . 4
⊢ {𝐸} ∈ Fin |
5 | | simpl 487 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑅 ∈ Ring) |
6 | | mat1rhmval.a |
. . . . 5
⊢ 𝐴 = ({𝐸} Mat 𝑅) |
7 | 6 | matring 21144 |
. . . 4
⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
8 | 4, 5, 7 | sylancr 591 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐴 ∈ Ring) |
9 | | mat1mhm.n |
. . . 4
⊢ 𝑁 = (mulGrp‘𝐴) |
10 | 9 | ringmgp 19372 |
. . 3
⊢ (𝐴 ∈ Ring → 𝑁 ∈ Mnd) |
11 | 8, 10 | syl 17 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑁 ∈ Mnd) |
12 | | mat1rhmval.k |
. . . 4
⊢ 𝐾 = (Base‘𝑅) |
13 | | mat1rhmval.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
14 | | mat1rhmval.o |
. . . 4
⊢ 𝑂 = 〈𝐸, 𝐸〉 |
15 | | mat1rhmval.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) |
16 | 12, 6, 13, 14, 15 | mat1f 21183 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾⟶𝐵) |
17 | | ringmnd 19376 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
18 | 17 | adantr 485 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑅 ∈ Mnd) |
19 | 18 | adantr 485 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑅 ∈ Mnd) |
20 | | simpr 489 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐸 ∈ 𝑉) |
21 | 20 | adantr 485 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝐸 ∈ 𝑉) |
22 | | simpll 767 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑅 ∈ Ring) |
23 | | eqid 2759 |
. . . . . . . . . . 11
⊢
(Base‘𝐴) =
(Base‘𝐴) |
24 | | snidg 4557 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ 𝑉 → 𝐸 ∈ {𝐸}) |
25 | 24 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝐸 ∈ {𝐸}) |
26 | | simprl 771 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑤 ∈ 𝐾) |
27 | 12, 6, 23, 14, 15 | mat1rhmcl 21182 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑤 ∈ 𝐾) → (𝐹‘𝑤) ∈ (Base‘𝐴)) |
28 | 22, 21, 26, 27 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐹‘𝑤) ∈ (Base‘𝐴)) |
29 | 6, 12, 23, 25, 25, 28 | matecld 21127 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐸(𝐹‘𝑤)𝐸) ∈ 𝐾) |
30 | | simprr 773 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝑦 ∈ 𝐾) |
31 | 12, 6, 23, 14, 15 | mat1rhmcl 21182 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → (𝐹‘𝑦) ∈ (Base‘𝐴)) |
32 | 22, 21, 30, 31 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐹‘𝑦) ∈ (Base‘𝐴)) |
33 | 6, 12, 23, 25, 25, 32 | matecld 21127 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐸(𝐹‘𝑦)𝐸) ∈ 𝐾) |
34 | | eqid 2759 |
. . . . . . . . . . 11
⊢
(.r‘𝑅) = (.r‘𝑅) |
35 | 12, 34 | ringcl 19383 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝐸(𝐹‘𝑤)𝐸) ∈ 𝐾 ∧ (𝐸(𝐹‘𝑦)𝐸) ∈ 𝐾) → ((𝐸(𝐹‘𝑤)𝐸)(.r‘𝑅)(𝐸(𝐹‘𝑦)𝐸)) ∈ 𝐾) |
36 | 22, 29, 33, 35 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → ((𝐸(𝐹‘𝑤)𝐸)(.r‘𝑅)(𝐸(𝐹‘𝑦)𝐸)) ∈ 𝐾) |
37 | | oveq2 7159 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝐸 → (𝐸(𝐹‘𝑤)𝑒) = (𝐸(𝐹‘𝑤)𝐸)) |
38 | | oveq1 7158 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝐸 → (𝑒(𝐹‘𝑦)𝐸) = (𝐸(𝐹‘𝑦)𝐸)) |
39 | 37, 38 | oveq12d 7169 |
. . . . . . . . . 10
⊢ (𝑒 = 𝐸 → ((𝐸(𝐹‘𝑤)𝑒)(.r‘𝑅)(𝑒(𝐹‘𝑦)𝐸)) = ((𝐸(𝐹‘𝑤)𝐸)(.r‘𝑅)(𝐸(𝐹‘𝑦)𝐸))) |
40 | 39 | adantl 486 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) ∧ 𝑒 = 𝐸) → ((𝐸(𝐹‘𝑤)𝑒)(.r‘𝑅)(𝑒(𝐹‘𝑦)𝐸)) = ((𝐸(𝐹‘𝑤)𝐸)(.r‘𝑅)(𝐸(𝐹‘𝑦)𝐸))) |
41 | 12, 19, 21, 36, 40 | gsumsnd 19141 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹‘𝑤)𝑒)(.r‘𝑅)(𝑒(𝐹‘𝑦)𝐸)))) = ((𝐸(𝐹‘𝑤)𝐸)(.r‘𝑅)(𝐸(𝐹‘𝑦)𝐸))) |
42 | 12, 6, 13, 14, 15 | mat1rhmelval 21181 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑤 ∈ 𝐾) → (𝐸(𝐹‘𝑤)𝐸) = 𝑤) |
43 | 22, 21, 26, 42 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐸(𝐹‘𝑤)𝐸) = 𝑤) |
44 | 12, 6, 13, 14, 15 | mat1rhmelval 21181 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → (𝐸(𝐹‘𝑦)𝐸) = 𝑦) |
45 | 22, 21, 30, 44 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐸(𝐹‘𝑦)𝐸) = 𝑦) |
46 | 43, 45 | oveq12d 7169 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → ((𝐸(𝐹‘𝑤)𝐸)(.r‘𝑅)(𝐸(𝐹‘𝑦)𝐸)) = (𝑤(.r‘𝑅)𝑦)) |
47 | 41, 46 | eqtrd 2794 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹‘𝑤)𝑒)(.r‘𝑅)(𝑒(𝐹‘𝑦)𝐸)))) = (𝑤(.r‘𝑅)𝑦)) |
48 | 12, 6, 13, 14, 15 | mat1rhmcl 21182 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑤 ∈ 𝐾) → (𝐹‘𝑤) ∈ 𝐵) |
49 | 22, 21, 26, 48 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐹‘𝑤) ∈ 𝐵) |
50 | 12, 6, 13, 14, 15 | mat1rhmcl 21182 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑦 ∈ 𝐾) → (𝐹‘𝑦) ∈ 𝐵) |
51 | 22, 21, 30, 50 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐹‘𝑦) ∈ 𝐵) |
52 | 49, 51 | jca 516 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → ((𝐹‘𝑤) ∈ 𝐵 ∧ (𝐹‘𝑦) ∈ 𝐵)) |
53 | 24, 24 | jca 516 |
. . . . . . . . 9
⊢ (𝐸 ∈ 𝑉 → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸})) |
54 | 53 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸})) |
55 | | eqid 2759 |
. . . . . . . . 9
⊢
(.r‘𝐴) = (.r‘𝐴) |
56 | 6, 13, 55 | matmulcell 21146 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ ((𝐹‘𝑤) ∈ 𝐵 ∧ (𝐹‘𝑦) ∈ 𝐵) ∧ (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸})) → (𝐸((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝐸) = (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹‘𝑤)𝑒)(.r‘𝑅)(𝑒(𝐹‘𝑦)𝐸))))) |
57 | 22, 52, 54, 56 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐸((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝐸) = (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹‘𝑤)𝑒)(.r‘𝑅)(𝑒(𝐹‘𝑦)𝐸))))) |
58 | 12, 34 | ringcl 19383 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → (𝑤(.r‘𝑅)𝑦) ∈ 𝐾) |
59 | 22, 26, 30, 58 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑤(.r‘𝑅)𝑦) ∈ 𝐾) |
60 | 12, 6, 13, 14, 15 | mat1rhmelval 21181 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ (𝑤(.r‘𝑅)𝑦) ∈ 𝐾) → (𝐸(𝐹‘(𝑤(.r‘𝑅)𝑦))𝐸) = (𝑤(.r‘𝑅)𝑦)) |
61 | 22, 21, 59, 60 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐸(𝐹‘(𝑤(.r‘𝑅)𝑦))𝐸) = (𝑤(.r‘𝑅)𝑦)) |
62 | 47, 57, 61 | 3eqtr4rd 2805 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐸(𝐹‘(𝑤(.r‘𝑅)𝑦))𝐸) = (𝐸((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝐸)) |
63 | | oveq1 7158 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐸 → (𝑖(𝐹‘(𝑤(.r‘𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(.r‘𝑅)𝑦))𝑗)) |
64 | | oveq1 7158 |
. . . . . . . . . 10
⊢ (𝑖 = 𝐸 → (𝑖((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝑗) = (𝐸((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝑗)) |
65 | 63, 64 | eqeq12d 2775 |
. . . . . . . . 9
⊢ (𝑖 = 𝐸 → ((𝑖(𝐹‘(𝑤(.r‘𝑅)𝑦))𝑗) = (𝑖((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r‘𝑅)𝑦))𝑗) = (𝐸((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝑗))) |
66 | | oveq2 7159 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐸 → (𝐸(𝐹‘(𝑤(.r‘𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(.r‘𝑅)𝑦))𝐸)) |
67 | | oveq2 7159 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐸 → (𝐸((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝑗) = (𝐸((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝐸)) |
68 | 66, 67 | eqeq12d 2775 |
. . . . . . . . 9
⊢ (𝑗 = 𝐸 → ((𝐸(𝐹‘(𝑤(.r‘𝑅)𝑦))𝑗) = (𝐸((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r‘𝑅)𝑦))𝐸) = (𝐸((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝐸))) |
69 | 65, 68 | 2ralsng 4574 |
. . . . . . . 8
⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r‘𝑅)𝑦))𝑗) = (𝑖((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r‘𝑅)𝑦))𝐸) = (𝐸((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝐸))) |
70 | 20, 69 | sylancom 592 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r‘𝑅)𝑦))𝑗) = (𝑖((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r‘𝑅)𝑦))𝐸) = (𝐸((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝐸))) |
71 | 70 | adantr 485 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r‘𝑅)𝑦))𝑗) = (𝑖((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r‘𝑅)𝑦))𝐸) = (𝐸((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝐸))) |
72 | 62, 71 | mpbird 260 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r‘𝑅)𝑦))𝑗) = (𝑖((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝑗)) |
73 | 12, 6, 13, 14, 15 | mat1rhmcl 21182 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ (𝑤(.r‘𝑅)𝑦) ∈ 𝐾) → (𝐹‘(𝑤(.r‘𝑅)𝑦)) ∈ 𝐵) |
74 | 22, 21, 59, 73 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐹‘(𝑤(.r‘𝑅)𝑦)) ∈ 𝐵) |
75 | 8 | adantr 485 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → 𝐴 ∈ Ring) |
76 | 13, 55 | ringcl 19383 |
. . . . . . 7
⊢ ((𝐴 ∈ Ring ∧ (𝐹‘𝑤) ∈ 𝐵 ∧ (𝐹‘𝑦) ∈ 𝐵) → ((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦)) ∈ 𝐵) |
77 | 75, 49, 51, 76 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → ((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦)) ∈ 𝐵) |
78 | 6, 13 | eqmat 21125 |
. . . . . 6
⊢ (((𝐹‘(𝑤(.r‘𝑅)𝑦)) ∈ 𝐵 ∧ ((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦)) ∈ 𝐵) → ((𝐹‘(𝑤(.r‘𝑅)𝑦)) = ((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r‘𝑅)𝑦))𝑗) = (𝑖((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝑗))) |
79 | 74, 77, 78 | syl2anc 588 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → ((𝐹‘(𝑤(.r‘𝑅)𝑦)) = ((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r‘𝑅)𝑦))𝑗) = (𝑖((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))𝑗))) |
80 | 72, 79 | mpbird 260 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) ∧ (𝑤 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝐹‘(𝑤(.r‘𝑅)𝑦)) = ((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))) |
81 | 80 | ralrimivva 3121 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ∀𝑤 ∈ 𝐾 ∀𝑦 ∈ 𝐾 (𝐹‘(𝑤(.r‘𝑅)𝑦)) = ((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦))) |
82 | | eqid 2759 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
83 | 12, 82 | ringidcl 19390 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐾) |
84 | 83 | adantr 485 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (1r‘𝑅) ∈ 𝐾) |
85 | 12, 6, 13, 14, 15 | mat1rhmval 21180 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ (1r‘𝑅) ∈ 𝐾) → (𝐹‘(1r‘𝑅)) = {〈𝑂, (1r‘𝑅)〉}) |
86 | 84, 85 | mpd3an3 1460 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐹‘(1r‘𝑅)) = {〈𝑂, (1r‘𝑅)〉}) |
87 | 6, 12, 14 | mat1dimid 21175 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (1r‘𝐴) = {〈𝑂, (1r‘𝑅)〉}) |
88 | 86, 87 | eqtr4d 2797 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐹‘(1r‘𝑅)) = (1r‘𝐴)) |
89 | 16, 81, 88 | 3jca 1126 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐹:𝐾⟶𝐵 ∧ ∀𝑤 ∈ 𝐾 ∀𝑦 ∈ 𝐾 (𝐹‘(𝑤(.r‘𝑅)𝑦)) = ((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦)) ∧ (𝐹‘(1r‘𝑅)) = (1r‘𝐴))) |
90 | 1, 12 | mgpbas 19314 |
. . 3
⊢ 𝐾 = (Base‘𝑀) |
91 | 9, 13 | mgpbas 19314 |
. . 3
⊢ 𝐵 = (Base‘𝑁) |
92 | 1, 34 | mgpplusg 19312 |
. . 3
⊢
(.r‘𝑅) = (+g‘𝑀) |
93 | 9, 55 | mgpplusg 19312 |
. . 3
⊢
(.r‘𝐴) = (+g‘𝑁) |
94 | 1, 82 | ringidval 19322 |
. . 3
⊢
(1r‘𝑅) = (0g‘𝑀) |
95 | | eqid 2759 |
. . . 4
⊢
(1r‘𝐴) = (1r‘𝐴) |
96 | 9, 95 | ringidval 19322 |
. . 3
⊢
(1r‘𝐴) = (0g‘𝑁) |
97 | 90, 91, 92, 93, 94, 96 | ismhm 18025 |
. 2
⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) ↔ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝐹:𝐾⟶𝐵 ∧ ∀𝑤 ∈ 𝐾 ∀𝑦 ∈ 𝐾 (𝐹‘(𝑤(.r‘𝑅)𝑦)) = ((𝐹‘𝑤)(.r‘𝐴)(𝐹‘𝑦)) ∧ (𝐹‘(1r‘𝑅)) = (1r‘𝐴)))) |
98 | 3, 11, 89, 97 | syl21anbrc 1342 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 ∈ (𝑀 MndHom 𝑁)) |