MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1mhm Structured version   Visualization version   GIF version

Theorem mat1mhm 22399
Description: There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
mat1mhm.m 𝑀 = (mulGrp‘𝑅)
mat1mhm.n 𝑁 = (mulGrp‘𝐴)
Assertion
Ref Expression
mat1mhm ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑀 MndHom 𝑁))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝐵   𝑥,𝐴   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁

Proof of Theorem mat1mhm
Dummy variables 𝑖 𝑗 𝑤 𝑦 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat1mhm.m . . . 4 𝑀 = (mulGrp‘𝑅)
21ringmgp 20157 . . 3 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
32adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑀 ∈ Mnd)
4 snfi 8965 . . . 4 {𝐸} ∈ Fin
5 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
6 mat1rhmval.a . . . . 5 𝐴 = ({𝐸} Mat 𝑅)
76matring 22358 . . . 4 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
84, 5, 7sylancr 587 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Ring)
9 mat1mhm.n . . . 4 𝑁 = (mulGrp‘𝐴)
109ringmgp 20157 . . 3 (𝐴 ∈ Ring → 𝑁 ∈ Mnd)
118, 10syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑁 ∈ Mnd)
12 mat1rhmval.k . . . 4 𝐾 = (Base‘𝑅)
13 mat1rhmval.b . . . 4 𝐵 = (Base‘𝐴)
14 mat1rhmval.o . . . 4 𝑂 = ⟨𝐸, 𝐸
15 mat1rhmval.f . . . 4 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
1612, 6, 13, 14, 15mat1f 22397 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾𝐵)
17 ringmnd 20161 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
1817adantr 480 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Mnd)
1918adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑅 ∈ Mnd)
20 simpr 484 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
2120adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐸𝑉)
22 simpll 766 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑅 ∈ Ring)
23 eqid 2731 . . . . . . . . . . 11 (Base‘𝐴) = (Base‘𝐴)
24 snidg 4610 . . . . . . . . . . . 12 (𝐸𝑉𝐸 ∈ {𝐸})
2524ad2antlr 727 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐸 ∈ {𝐸})
26 simprl 770 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑤𝐾)
2712, 6, 23, 14, 15mat1rhmcl 22396 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐹𝑤) ∈ (Base‘𝐴))
2822, 21, 26, 27syl3anc 1373 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑤) ∈ (Base‘𝐴))
296, 12, 23, 25, 25, 28matecld 22341 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑤)𝐸) ∈ 𝐾)
30 simprr 772 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑦𝐾)
3112, 6, 23, 14, 15mat1rhmcl 22396 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐹𝑦) ∈ (Base‘𝐴))
3222, 21, 30, 31syl3anc 1373 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑦) ∈ (Base‘𝐴))
336, 12, 23, 25, 25, 32matecld 22341 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑦)𝐸) ∈ 𝐾)
34 eqid 2731 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3512, 34ringcl 20168 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐸(𝐹𝑤)𝐸) ∈ 𝐾 ∧ (𝐸(𝐹𝑦)𝐸) ∈ 𝐾) → ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)) ∈ 𝐾)
3622, 29, 33, 35syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)) ∈ 𝐾)
37 oveq2 7354 . . . . . . . . . . 11 (𝑒 = 𝐸 → (𝐸(𝐹𝑤)𝑒) = (𝐸(𝐹𝑤)𝐸))
38 oveq1 7353 . . . . . . . . . . 11 (𝑒 = 𝐸 → (𝑒(𝐹𝑦)𝐸) = (𝐸(𝐹𝑦)𝐸))
3937, 38oveq12d 7364 . . . . . . . . . 10 (𝑒 = 𝐸 → ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)) = ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)))
4039adantl 481 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) ∧ 𝑒 = 𝐸) → ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)) = ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)))
4112, 19, 21, 36, 40gsumsnd 19864 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))) = ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)))
4212, 6, 13, 14, 15mat1rhmelval 22395 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
4322, 21, 26, 42syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
4412, 6, 13, 14, 15mat1rhmelval 22395 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
4522, 21, 30, 44syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
4643, 45oveq12d 7364 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐸(𝐹𝑤)𝐸)(.r𝑅)(𝐸(𝐹𝑦)𝐸)) = (𝑤(.r𝑅)𝑦))
4741, 46eqtrd 2766 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))) = (𝑤(.r𝑅)𝑦))
4812, 6, 13, 14, 15mat1rhmcl 22396 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐹𝑤) ∈ 𝐵)
4922, 21, 26, 48syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑤) ∈ 𝐵)
5012, 6, 13, 14, 15mat1rhmcl 22396 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐹𝑦) ∈ 𝐵)
5122, 21, 30, 50syl3anc 1373 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑦) ∈ 𝐵)
5249, 51jca 511 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵))
5324, 24jca 511 . . . . . . . . 9 (𝐸𝑉 → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
5453ad2antlr 727 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
55 eqid 2731 . . . . . . . . 9 (.r𝐴) = (.r𝐴)
566, 13, 55matmulcell 22360 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) ∧ (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸})) → (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸) = (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))))
5722, 52, 54, 56syl3anc 1373 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸) = (𝑅 Σg (𝑒 ∈ {𝐸} ↦ ((𝐸(𝐹𝑤)𝑒)(.r𝑅)(𝑒(𝐹𝑦)𝐸)))))
5812, 34ringcl 20168 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑤𝐾𝑦𝐾) → (𝑤(.r𝑅)𝑦) ∈ 𝐾)
5922, 26, 30, 58syl3anc 1373 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑤(.r𝑅)𝑦) ∈ 𝐾)
6012, 6, 13, 14, 15mat1rhmelval 22395 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(.r𝑅)𝑦) ∈ 𝐾) → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝑤(.r𝑅)𝑦))
6122, 21, 59, 60syl3anc 1373 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝑤(.r𝑅)𝑦))
6247, 57, 613eqtr4rd 2777 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸))
63 oveq1 7353 . . . . . . . . . 10 (𝑖 = 𝐸 → (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗))
64 oveq1 7353 . . . . . . . . . 10 (𝑖 = 𝐸 → (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗))
6563, 64eqeq12d 2747 . . . . . . . . 9 (𝑖 = 𝐸 → ((𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗)))
66 oveq2 7354 . . . . . . . . . 10 (𝑗 = 𝐸 → (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸))
67 oveq2 7354 . . . . . . . . . 10 (𝑗 = 𝐸 → (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸))
6866, 67eqeq12d 2747 . . . . . . . . 9 (𝑗 = 𝐸 → ((𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
6965, 682ralsng 4628 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
7020, 69sylancom 588 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
7170adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(.r𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝐸)))
7262, 71mpbird 257 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗))
7312, 6, 13, 14, 15mat1rhmcl 22396 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(.r𝑅)𝑦) ∈ 𝐾) → (𝐹‘(𝑤(.r𝑅)𝑦)) ∈ 𝐵)
7422, 21, 59, 73syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(.r𝑅)𝑦)) ∈ 𝐵)
758adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐴 ∈ Ring)
7613, 55ringcl 20168 . . . . . . 7 ((𝐴 ∈ Ring ∧ (𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∈ 𝐵)
7775, 49, 51, 76syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∈ 𝐵)
786, 13eqmat 22339 . . . . . 6 (((𝐹‘(𝑤(.r𝑅)𝑦)) ∈ 𝐵 ∧ ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗)))
7974, 77, 78syl2anc 584 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(.r𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(.r𝐴)(𝐹𝑦))𝑗)))
8072, 79mpbird 257 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)))
8180ralrimivva 3175 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ∀𝑤𝐾𝑦𝐾 (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)))
82 eqid 2731 . . . . . . 7 (1r𝑅) = (1r𝑅)
8312, 82ringidcl 20183 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
8483adantr 480 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (1r𝑅) ∈ 𝐾)
8512, 6, 13, 14, 15mat1rhmval 22394 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (1r𝑅) ∈ 𝐾) → (𝐹‘(1r𝑅)) = {⟨𝑂, (1r𝑅)⟩})
8684, 85mpd3an3 1464 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹‘(1r𝑅)) = {⟨𝑂, (1r𝑅)⟩})
876, 12, 14mat1dimid 22389 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (1r𝐴) = {⟨𝑂, (1r𝑅)⟩})
8886, 87eqtr4d 2769 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹‘(1r𝑅)) = (1r𝐴))
8916, 81, 883jca 1128 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹:𝐾𝐵 ∧ ∀𝑤𝐾𝑦𝐾 (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∧ (𝐹‘(1r𝑅)) = (1r𝐴)))
901, 12mgpbas 20063 . . 3 𝐾 = (Base‘𝑀)
919, 13mgpbas 20063 . . 3 𝐵 = (Base‘𝑁)
921, 34mgpplusg 20062 . . 3 (.r𝑅) = (+g𝑀)
939, 55mgpplusg 20062 . . 3 (.r𝐴) = (+g𝑁)
941, 82ringidval 20101 . . 3 (1r𝑅) = (0g𝑀)
95 eqid 2731 . . . 4 (1r𝐴) = (1r𝐴)
969, 95ringidval 20101 . . 3 (1r𝐴) = (0g𝑁)
9790, 91, 92, 93, 94, 96ismhm 18693 . 2 (𝐹 ∈ (𝑀 MndHom 𝑁) ↔ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝐹:𝐾𝐵 ∧ ∀𝑤𝐾𝑦𝐾 (𝐹‘(𝑤(.r𝑅)𝑦)) = ((𝐹𝑤)(.r𝐴)(𝐹𝑦)) ∧ (𝐹‘(1r𝑅)) = (1r𝐴))))
983, 11, 89, 97syl21anbrc 1345 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑀 MndHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {csn 4573  cop 4579  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  Basecbs 17120  .rcmulr 17162   Σg cgsu 17344  Mndcmnd 18642   MndHom cmhm 18689  mulGrpcmgp 20058  1rcur 20099  Ringcrg 20151   Mat cmat 22322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-subrg 20485  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684  df-mamu 22306  df-mat 22323
This theorem is referenced by:  mat1rhm  22400
  Copyright terms: Public domain W3C validator