MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1ghm Structured version   Visualization version   GIF version

Theorem mat1ghm 22377
Description: There is a group homomorphism from the additive group of a ring to the additive group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1ghm ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑅 GrpHom 𝐴))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝐵   𝑥,𝐴   𝑥,𝐹

Proof of Theorem mat1ghm
Dummy variables 𝑖 𝑗 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat1rhmval.k . 2 𝐾 = (Base‘𝑅)
2 mat1rhmval.b . 2 𝐵 = (Base‘𝐴)
3 eqid 2730 . 2 (+g𝑅) = (+g𝑅)
4 eqid 2730 . 2 (+g𝐴) = (+g𝐴)
5 ringgrp 20154 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
65adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Grp)
7 snfi 9017 . . 3 {𝐸} ∈ Fin
8 simpl 482 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
9 mat1rhmval.a . . . 4 𝐴 = ({𝐸} Mat 𝑅)
109matgrp 22324 . . 3 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
117, 8, 10sylancr 587 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Grp)
12 mat1rhmval.o . . 3 𝑂 = ⟨𝐸, 𝐸
13 mat1rhmval.f . . 3 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
141, 9, 2, 12, 13mat1f 22376 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾𝐵)
158adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑅 ∈ Ring)
16 simpr 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
1716adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐸𝑉)
18 simpl 482 . . . . . . . 8 ((𝑤𝐾𝑦𝐾) → 𝑤𝐾)
1918adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑤𝐾)
201, 9, 2, 12, 13mat1rhmelval 22374 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
2115, 17, 19, 20syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
22 simpr 484 . . . . . . . 8 ((𝑤𝐾𝑦𝐾) → 𝑦𝐾)
2322adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑦𝐾)
241, 9, 2, 12, 13mat1rhmelval 22374 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
2515, 17, 23, 24syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
2621, 25oveq12d 7408 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)) = (𝑤(+g𝑅)𝑦))
271, 9, 2, 12, 13mat1rhmcl 22375 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐹𝑤) ∈ 𝐵)
2815, 17, 19, 27syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑤) ∈ 𝐵)
291, 9, 2, 12, 13mat1rhmcl 22375 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐹𝑦) ∈ 𝐵)
3015, 17, 23, 29syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑦) ∈ 𝐵)
31 snidg 4627 . . . . . . . . 9 (𝐸𝑉𝐸 ∈ {𝐸})
3231, 31jca 511 . . . . . . . 8 (𝐸𝑉 → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
3332adantl 481 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
3433adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
359, 2, 4, 3matplusgcell 22327 . . . . . 6 ((((𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) ∧ (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸})) → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸) = ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)))
3628, 30, 34, 35syl21anc 837 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸) = ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)))
371, 3ringacl 20194 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑤𝐾𝑦𝐾) → (𝑤(+g𝑅)𝑦) ∈ 𝐾)
3815, 19, 23, 37syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑤(+g𝑅)𝑦) ∈ 𝐾)
391, 9, 2, 12, 13mat1rhmelval 22374 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(+g𝑅)𝑦) ∈ 𝐾) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝑤(+g𝑅)𝑦))
4015, 17, 38, 39syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝑤(+g𝑅)𝑦))
4126, 36, 403eqtr4rd 2776 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸))
42 oveq1 7397 . . . . . . . 8 (𝑖 = 𝐸 → (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗))
43 oveq1 7397 . . . . . . . 8 (𝑖 = 𝐸 → (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗))
4442, 43eqeq12d 2746 . . . . . . 7 (𝑖 = 𝐸 → ((𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
45 oveq2 7398 . . . . . . . 8 (𝑗 = 𝐸 → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸))
46 oveq2 7398 . . . . . . . 8 (𝑗 = 𝐸 → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸))
4745, 46eqeq12d 2746 . . . . . . 7 (𝑗 = 𝐸 → ((𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
4844, 472ralsng 4645 . . . . . 6 ((𝐸𝑉𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
4916, 16, 48syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
5049adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
5141, 50mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗))
521, 9, 2, 12, 13mat1rhmcl 22375 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(+g𝑅)𝑦) ∈ 𝐾) → (𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵)
5315, 17, 38, 52syl3anc 1373 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵)
549matring 22337 . . . . . . 7 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
557, 8, 54sylancr 587 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Ring)
5655adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐴 ∈ Ring)
572, 4ringacl 20194 . . . . 5 ((𝐴 ∈ Ring ∧ (𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵)
5856, 28, 30, 57syl3anc 1373 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵)
599, 2eqmat 22318 . . . 4 (((𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵 ∧ ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
6053, 58, 59syl2anc 584 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
6151, 60mpbird 257 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)))
621, 2, 3, 4, 6, 11, 14, 61isghmd 19164 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑅 GrpHom 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  {csn 4592  cop 4598  cmpt 5191  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186  +gcplusg 17227  Grpcgrp 18872   GrpHom cghm 19151  Ringcrg 20149   Mat cmat 22301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-mamu 22285  df-mat 22302
This theorem is referenced by:  mat1rhm  22379
  Copyright terms: Public domain W3C validator