MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1ghm Structured version   Visualization version   GIF version

Theorem mat1ghm 21088
Description: There is a group homomorphism from the additive group of a ring to the additive group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1ghm ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑅 GrpHom 𝐴))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝐵   𝑥,𝐴   𝑥,𝐹

Proof of Theorem mat1ghm
Dummy variables 𝑖 𝑗 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat1rhmval.k . 2 𝐾 = (Base‘𝑅)
2 mat1rhmval.b . 2 𝐵 = (Base‘𝐴)
3 eqid 2798 . 2 (+g𝑅) = (+g𝑅)
4 eqid 2798 . 2 (+g𝐴) = (+g𝐴)
5 ringgrp 19295 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
65adantr 484 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Grp)
7 snfi 8577 . . 3 {𝐸} ∈ Fin
8 simpl 486 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
9 mat1rhmval.a . . . 4 𝐴 = ({𝐸} Mat 𝑅)
109matgrp 21035 . . 3 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
117, 8, 10sylancr 590 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Grp)
12 mat1rhmval.o . . 3 𝑂 = ⟨𝐸, 𝐸
13 mat1rhmval.f . . 3 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
141, 9, 2, 12, 13mat1f 21087 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾𝐵)
158adantr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑅 ∈ Ring)
16 simpr 488 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
1716adantr 484 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐸𝑉)
18 simpl 486 . . . . . . . 8 ((𝑤𝐾𝑦𝐾) → 𝑤𝐾)
1918adantl 485 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑤𝐾)
201, 9, 2, 12, 13mat1rhmelval 21085 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
2115, 17, 19, 20syl3anc 1368 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
22 simpr 488 . . . . . . . 8 ((𝑤𝐾𝑦𝐾) → 𝑦𝐾)
2322adantl 485 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑦𝐾)
241, 9, 2, 12, 13mat1rhmelval 21085 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
2515, 17, 23, 24syl3anc 1368 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
2621, 25oveq12d 7153 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)) = (𝑤(+g𝑅)𝑦))
271, 9, 2, 12, 13mat1rhmcl 21086 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐹𝑤) ∈ 𝐵)
2815, 17, 19, 27syl3anc 1368 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑤) ∈ 𝐵)
291, 9, 2, 12, 13mat1rhmcl 21086 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐹𝑦) ∈ 𝐵)
3015, 17, 23, 29syl3anc 1368 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑦) ∈ 𝐵)
31 snidg 4559 . . . . . . . . 9 (𝐸𝑉𝐸 ∈ {𝐸})
3231, 31jca 515 . . . . . . . 8 (𝐸𝑉 → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
3332adantl 485 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
3433adantr 484 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
359, 2, 4, 3matplusgcell 21038 . . . . . 6 ((((𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) ∧ (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸})) → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸) = ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)))
3628, 30, 34, 35syl21anc 836 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸) = ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)))
371, 3ringacl 19324 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑤𝐾𝑦𝐾) → (𝑤(+g𝑅)𝑦) ∈ 𝐾)
3815, 19, 23, 37syl3anc 1368 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑤(+g𝑅)𝑦) ∈ 𝐾)
391, 9, 2, 12, 13mat1rhmelval 21085 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(+g𝑅)𝑦) ∈ 𝐾) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝑤(+g𝑅)𝑦))
4015, 17, 38, 39syl3anc 1368 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝑤(+g𝑅)𝑦))
4126, 36, 403eqtr4rd 2844 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸))
42 oveq1 7142 . . . . . . . 8 (𝑖 = 𝐸 → (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗))
43 oveq1 7142 . . . . . . . 8 (𝑖 = 𝐸 → (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗))
4442, 43eqeq12d 2814 . . . . . . 7 (𝑖 = 𝐸 → ((𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
45 oveq2 7143 . . . . . . . 8 (𝑗 = 𝐸 → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸))
46 oveq2 7143 . . . . . . . 8 (𝑗 = 𝐸 → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸))
4745, 46eqeq12d 2814 . . . . . . 7 (𝑗 = 𝐸 → ((𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
4844, 472ralsng 4576 . . . . . 6 ((𝐸𝑉𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
4916, 16, 48syl2anc 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
5049adantr 484 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
5141, 50mpbird 260 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗))
521, 9, 2, 12, 13mat1rhmcl 21086 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(+g𝑅)𝑦) ∈ 𝐾) → (𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵)
5315, 17, 38, 52syl3anc 1368 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵)
549matring 21048 . . . . . . 7 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
557, 8, 54sylancr 590 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Ring)
5655adantr 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐴 ∈ Ring)
572, 4ringacl 19324 . . . . 5 ((𝐴 ∈ Ring ∧ (𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵)
5856, 28, 30, 57syl3anc 1368 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵)
599, 2eqmat 21029 . . . 4 (((𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵 ∧ ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
6053, 58, 59syl2anc 587 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
6151, 60mpbird 260 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)))
621, 2, 3, 4, 6, 11, 14, 61isghmd 18359 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑅 GrpHom 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  {csn 4525  cop 4531  cmpt 5110  cfv 6324  (class class class)co 7135  Fincfn 8492  Basecbs 16475  +gcplusg 16557  Grpcgrp 18095   GrpHom cghm 18347  Ringcrg 19290   Mat cmat 21012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-dsmm 20421  df-frlm 20436  df-mamu 20991  df-mat 21013
This theorem is referenced by:  mat1rhm  21090
  Copyright terms: Public domain W3C validator