MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1ghm Structured version   Visualization version   GIF version

Theorem mat1ghm 22421
Description: There is a group homomorphism from the additive group of a ring to the additive group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1ghm ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑅 GrpHom 𝐴))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝐵   𝑥,𝐴   𝑥,𝐹

Proof of Theorem mat1ghm
Dummy variables 𝑖 𝑗 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat1rhmval.k . 2 𝐾 = (Base‘𝑅)
2 mat1rhmval.b . 2 𝐵 = (Base‘𝐴)
3 eqid 2735 . 2 (+g𝑅) = (+g𝑅)
4 eqid 2735 . 2 (+g𝐴) = (+g𝐴)
5 ringgrp 20198 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
65adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Grp)
7 snfi 9057 . . 3 {𝐸} ∈ Fin
8 simpl 482 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
9 mat1rhmval.a . . . 4 𝐴 = ({𝐸} Mat 𝑅)
109matgrp 22368 . . 3 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
117, 8, 10sylancr 587 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Grp)
12 mat1rhmval.o . . 3 𝑂 = ⟨𝐸, 𝐸
13 mat1rhmval.f . . 3 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
141, 9, 2, 12, 13mat1f 22420 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾𝐵)
158adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑅 ∈ Ring)
16 simpr 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
1716adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐸𝑉)
18 simpl 482 . . . . . . . 8 ((𝑤𝐾𝑦𝐾) → 𝑤𝐾)
1918adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑤𝐾)
201, 9, 2, 12, 13mat1rhmelval 22418 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
2115, 17, 19, 20syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
22 simpr 484 . . . . . . . 8 ((𝑤𝐾𝑦𝐾) → 𝑦𝐾)
2322adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑦𝐾)
241, 9, 2, 12, 13mat1rhmelval 22418 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
2515, 17, 23, 24syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
2621, 25oveq12d 7423 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)) = (𝑤(+g𝑅)𝑦))
271, 9, 2, 12, 13mat1rhmcl 22419 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐹𝑤) ∈ 𝐵)
2815, 17, 19, 27syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑤) ∈ 𝐵)
291, 9, 2, 12, 13mat1rhmcl 22419 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐹𝑦) ∈ 𝐵)
3015, 17, 23, 29syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑦) ∈ 𝐵)
31 snidg 4636 . . . . . . . . 9 (𝐸𝑉𝐸 ∈ {𝐸})
3231, 31jca 511 . . . . . . . 8 (𝐸𝑉 → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
3332adantl 481 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
3433adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
359, 2, 4, 3matplusgcell 22371 . . . . . 6 ((((𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) ∧ (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸})) → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸) = ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)))
3628, 30, 34, 35syl21anc 837 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸) = ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)))
371, 3ringacl 20238 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑤𝐾𝑦𝐾) → (𝑤(+g𝑅)𝑦) ∈ 𝐾)
3815, 19, 23, 37syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑤(+g𝑅)𝑦) ∈ 𝐾)
391, 9, 2, 12, 13mat1rhmelval 22418 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(+g𝑅)𝑦) ∈ 𝐾) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝑤(+g𝑅)𝑦))
4015, 17, 38, 39syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝑤(+g𝑅)𝑦))
4126, 36, 403eqtr4rd 2781 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸))
42 oveq1 7412 . . . . . . . 8 (𝑖 = 𝐸 → (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗))
43 oveq1 7412 . . . . . . . 8 (𝑖 = 𝐸 → (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗))
4442, 43eqeq12d 2751 . . . . . . 7 (𝑖 = 𝐸 → ((𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
45 oveq2 7413 . . . . . . . 8 (𝑗 = 𝐸 → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸))
46 oveq2 7413 . . . . . . . 8 (𝑗 = 𝐸 → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸))
4745, 46eqeq12d 2751 . . . . . . 7 (𝑗 = 𝐸 → ((𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
4844, 472ralsng 4654 . . . . . 6 ((𝐸𝑉𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
4916, 16, 48syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
5049adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
5141, 50mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗))
521, 9, 2, 12, 13mat1rhmcl 22419 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(+g𝑅)𝑦) ∈ 𝐾) → (𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵)
5315, 17, 38, 52syl3anc 1373 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵)
549matring 22381 . . . . . . 7 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
557, 8, 54sylancr 587 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Ring)
5655adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐴 ∈ Ring)
572, 4ringacl 20238 . . . . 5 ((𝐴 ∈ Ring ∧ (𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵)
5856, 28, 30, 57syl3anc 1373 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵)
599, 2eqmat 22362 . . . 4 (((𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵 ∧ ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
6053, 58, 59syl2anc 584 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
6151, 60mpbird 257 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)))
621, 2, 3, 4, 6, 11, 14, 61isghmd 19208 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑅 GrpHom 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {csn 4601  cop 4607  cmpt 5201  cfv 6531  (class class class)co 7405  Fincfn 8959  Basecbs 17228  +gcplusg 17271  Grpcgrp 18916   GrpHom cghm 19195  Ringcrg 20193   Mat cmat 22345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-subrg 20530  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-mamu 22329  df-mat 22346
This theorem is referenced by:  mat1rhm  22423
  Copyright terms: Public domain W3C validator