MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1ghm Structured version   Visualization version   GIF version

Theorem mat1ghm 22403
Description: There is a group homomorphism from the additive group of a ring to the additive group of the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1ghm ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑅 GrpHom 𝐴))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝐵   𝑥,𝐴   𝑥,𝐹

Proof of Theorem mat1ghm
Dummy variables 𝑖 𝑗 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat1rhmval.k . 2 𝐾 = (Base‘𝑅)
2 mat1rhmval.b . 2 𝐵 = (Base‘𝐴)
3 eqid 2729 . 2 (+g𝑅) = (+g𝑅)
4 eqid 2729 . 2 (+g𝐴) = (+g𝐴)
5 ringgrp 20158 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
65adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Grp)
7 snfi 8991 . . 3 {𝐸} ∈ Fin
8 simpl 482 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
9 mat1rhmval.a . . . 4 𝐴 = ({𝐸} Mat 𝑅)
109matgrp 22350 . . 3 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
117, 8, 10sylancr 587 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Grp)
12 mat1rhmval.o . . 3 𝑂 = ⟨𝐸, 𝐸
13 mat1rhmval.f . . 3 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
141, 9, 2, 12, 13mat1f 22402 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾𝐵)
158adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑅 ∈ Ring)
16 simpr 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
1716adantr 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐸𝑉)
18 simpl 482 . . . . . . . 8 ((𝑤𝐾𝑦𝐾) → 𝑤𝐾)
1918adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑤𝐾)
201, 9, 2, 12, 13mat1rhmelval 22400 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
2115, 17, 19, 20syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑤)𝐸) = 𝑤)
22 simpr 484 . . . . . . . 8 ((𝑤𝐾𝑦𝐾) → 𝑦𝐾)
2322adantl 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝑦𝐾)
241, 9, 2, 12, 13mat1rhmelval 22400 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
2515, 17, 23, 24syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹𝑦)𝐸) = 𝑦)
2621, 25oveq12d 7387 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)) = (𝑤(+g𝑅)𝑦))
271, 9, 2, 12, 13mat1rhmcl 22401 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑤𝐾) → (𝐹𝑤) ∈ 𝐵)
2815, 17, 19, 27syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑤) ∈ 𝐵)
291, 9, 2, 12, 13mat1rhmcl 22401 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑦𝐾) → (𝐹𝑦) ∈ 𝐵)
3015, 17, 23, 29syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹𝑦) ∈ 𝐵)
31 snidg 4620 . . . . . . . . 9 (𝐸𝑉𝐸 ∈ {𝐸})
3231, 31jca 511 . . . . . . . 8 (𝐸𝑉 → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
3332adantl 481 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
3433adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸}))
359, 2, 4, 3matplusgcell 22353 . . . . . 6 ((((𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) ∧ (𝐸 ∈ {𝐸} ∧ 𝐸 ∈ {𝐸})) → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸) = ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)))
3628, 30, 34, 35syl21anc 837 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸) = ((𝐸(𝐹𝑤)𝐸)(+g𝑅)(𝐸(𝐹𝑦)𝐸)))
371, 3ringacl 20198 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑤𝐾𝑦𝐾) → (𝑤(+g𝑅)𝑦) ∈ 𝐾)
3815, 19, 23, 37syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝑤(+g𝑅)𝑦) ∈ 𝐾)
391, 9, 2, 12, 13mat1rhmelval 22400 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(+g𝑅)𝑦) ∈ 𝐾) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝑤(+g𝑅)𝑦))
4015, 17, 38, 39syl3anc 1373 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝑤(+g𝑅)𝑦))
4126, 36, 403eqtr4rd 2775 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸))
42 oveq1 7376 . . . . . . . 8 (𝑖 = 𝐸 → (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗))
43 oveq1 7376 . . . . . . . 8 (𝑖 = 𝐸 → (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗))
4442, 43eqeq12d 2745 . . . . . . 7 (𝑖 = 𝐸 → ((𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
45 oveq2 7377 . . . . . . . 8 (𝑗 = 𝐸 → (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸))
46 oveq2 7377 . . . . . . . 8 (𝑗 = 𝐸 → (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸))
4745, 46eqeq12d 2745 . . . . . . 7 (𝑗 = 𝐸 → ((𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
4844, 472ralsng 4638 . . . . . 6 ((𝐸𝑉𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
4916, 16, 48syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
5049adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗) ↔ (𝐸(𝐹‘(𝑤(+g𝑅)𝑦))𝐸) = (𝐸((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝐸)))
5141, 50mpbird 257 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗))
521, 9, 2, 12, 13mat1rhmcl 22401 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉 ∧ (𝑤(+g𝑅)𝑦) ∈ 𝐾) → (𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵)
5315, 17, 38, 52syl3anc 1373 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵)
549matring 22363 . . . . . . 7 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
557, 8, 54sylancr 587 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐴 ∈ Ring)
5655adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → 𝐴 ∈ Ring)
572, 4ringacl 20198 . . . . 5 ((𝐴 ∈ Ring ∧ (𝐹𝑤) ∈ 𝐵 ∧ (𝐹𝑦) ∈ 𝐵) → ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵)
5856, 28, 30, 57syl3anc 1373 . . . 4 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵)
599, 2eqmat 22344 . . . 4 (((𝐹‘(𝑤(+g𝑅)𝑦)) ∈ 𝐵 ∧ ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ∈ 𝐵) → ((𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
6053, 58, 59syl2anc 584 . . 3 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → ((𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)) ↔ ∀𝑖 ∈ {𝐸}∀𝑗 ∈ {𝐸} (𝑖(𝐹‘(𝑤(+g𝑅)𝑦))𝑗) = (𝑖((𝐹𝑤)(+g𝐴)(𝐹𝑦))𝑗)))
6151, 60mpbird 257 . 2 (((𝑅 ∈ Ring ∧ 𝐸𝑉) ∧ (𝑤𝐾𝑦𝐾)) → (𝐹‘(𝑤(+g𝑅)𝑦)) = ((𝐹𝑤)(+g𝐴)(𝐹𝑦)))
621, 2, 3, 4, 6, 11, 14, 61isghmd 19139 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 ∈ (𝑅 GrpHom 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {csn 4585  cop 4591  cmpt 5183  cfv 6499  (class class class)co 7369  Fincfn 8895  Basecbs 17155  +gcplusg 17196  Grpcgrp 18847   GrpHom cghm 19126  Ringcrg 20153   Mat cmat 22327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrg 20490  df-lmod 20800  df-lss 20870  df-sra 21112  df-rgmod 21113  df-dsmm 21674  df-frlm 21689  df-mamu 22311  df-mat 22328
This theorem is referenced by:  mat1rhm  22405
  Copyright terms: Public domain W3C validator