| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reusng | Structured version Visualization version GIF version | ||
| Description: Restricted existential uniqueness over a singleton. (Contributed by AV, 3-Apr-2023.) |
| Ref | Expression |
|---|---|
| ralsng.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reusng | ⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | ralsng.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | reusngf 4622 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃!𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃!wreu 3344 {csn 4571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-v 3438 df-sbc 3737 df-sn 4572 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |