MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusng Structured version   Visualization version   GIF version

Theorem reusng 4616
Description: Restricted existential uniqueness over a singleton. (Contributed by AV, 3-Apr-2023.)
Hypothesis
Ref Expression
ralsng.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
reusng (𝐴𝑉 → (∃!𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem reusng
StepHypRef Expression
1 nfv 1920 . 2 𝑥𝜓
2 ralsng.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2reusngf 4613 1 (𝐴𝑉 → (∃!𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2109  ∃!wreu 3067  {csn 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-reu 3072  df-v 3432  df-sbc 3720  df-sn 4567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator