MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusng Structured version   Visualization version   GIF version

Theorem reusng 4625
Description: Restricted existential uniqueness over a singleton. (Contributed by AV, 3-Apr-2023.)
Hypothesis
Ref Expression
ralsng.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
reusng (𝐴𝑉 → (∃!𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem reusng
StepHypRef Expression
1 nfv 1915 . 2 𝑥𝜓
2 ralsng.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2reusngf 4622 1 (𝐴𝑉 → (∃!𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  ∃!wreu 3344  {csn 4571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-v 3438  df-sbc 3737  df-sn 4572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator