MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusng Structured version   Visualization version   GIF version

Theorem reusng 4676
Description: Restricted existential uniqueness over a singleton. (Contributed by AV, 3-Apr-2023.)
Hypothesis
Ref Expression
ralsng.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
reusng (𝐴𝑉 → (∃!𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem reusng
StepHypRef Expression
1 nfv 1913 . 2 𝑥𝜓
2 ralsng.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2reusngf 4673 1 (𝐴𝑉 → (∃!𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  ∃!wreu 3377  {csn 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-v 3481  df-sbc 3788  df-sn 4626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator