MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrrnghm Structured version   Visualization version   GIF version

Theorem zrrnghm 20501
Description: The constant mapping to zero is a non-unital ring homomorphism from the zero ring to any non-unital ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrnghm.b 𝐵 = (Base‘𝑇)
zrrnghm.0 0 = (0g𝑆)
zrrnghm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
zrrnghm ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 RngHom 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem zrrnghm
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4111 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring)
2 ringrng 20250 . . . . 5 (𝑇 ∈ Ring → 𝑇 ∈ Rng)
31, 2syl 17 . . . 4 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Rng)
43anim1i 615 . . 3 ((𝑇 ∈ (Ring ∖ NzRing) ∧ 𝑆 ∈ Rng) → (𝑇 ∈ Rng ∧ 𝑆 ∈ Rng))
54ancoms 458 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑇 ∈ Rng ∧ 𝑆 ∈ Rng))
6 rngabl 20120 . . . . . 6 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
7 ablgrp 19771 . . . . . 6 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
86, 7syl 17 . . . . 5 (𝑆 ∈ Rng → 𝑆 ∈ Grp)
98adantr 480 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝑆 ∈ Grp)
10 ringgrp 20203 . . . . . 6 (𝑇 ∈ Ring → 𝑇 ∈ Grp)
111, 10syl 17 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp)
1211adantl 481 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝑇 ∈ Grp)
13 zrrnghm.b . . . . . 6 𝐵 = (Base‘𝑇)
14 eqid 2736 . . . . . 6 (0g𝑇) = (0g𝑇)
1513, 140ringbas 20493 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝐵 = {(0g𝑇)})
1615adantl 481 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐵 = {(0g𝑇)})
17 zrrnghm.0 . . . . 5 0 = (0g𝑆)
18 zrrnghm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1913, 17, 18, 14c0snghm 20429 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {(0g𝑇)}) → 𝐻 ∈ (𝑇 GrpHom 𝑆))
209, 12, 16, 19syl3anc 1373 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 GrpHom 𝑆))
2118a1i 11 . . . . . . . 8 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → 𝐻 = (𝑥𝐵0 ))
22 eqidd 2737 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ 𝑥 = (0g𝑇)) → 0 = 0 )
2313, 14ring0cl 20232 . . . . . . . . . 10 (𝑇 ∈ Ring → (0g𝑇) ∈ 𝐵)
241, 23syl 17 . . . . . . . . 9 (𝑇 ∈ (Ring ∖ NzRing) → (0g𝑇) ∈ 𝐵)
2524ad2antlr 727 . . . . . . . 8 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (0g𝑇) ∈ 𝐵)
2617fvexi 6895 . . . . . . . . 9 0 ∈ V
2726a1i 11 . . . . . . . 8 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → 0 ∈ V)
2821, 22, 25, 27fvmptd 6998 . . . . . . 7 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (𝐻‘(0g𝑇)) = 0 )
29 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝑆) = (Base‘𝑆)
3029, 17grpidcl 18953 . . . . . . . . . . . . 13 (𝑆 ∈ Grp → 0 ∈ (Base‘𝑆))
318, 30syl 17 . . . . . . . . . . . 12 (𝑆 ∈ Rng → 0 ∈ (Base‘𝑆))
32 eqid 2736 . . . . . . . . . . . . 13 (.r𝑆) = (.r𝑆)
3329, 32, 17rnglz 20130 . . . . . . . . . . . 12 ((𝑆 ∈ Rng ∧ 0 ∈ (Base‘𝑆)) → ( 0 (.r𝑆) 0 ) = 0 )
3431, 33mpdan 687 . . . . . . . . . . 11 (𝑆 ∈ Rng → ( 0 (.r𝑆) 0 ) = 0 )
3534adantr 480 . . . . . . . . . 10 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → ( 0 (.r𝑆) 0 ) = 0 )
3635adantr 480 . . . . . . . . 9 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ( 0 (.r𝑆) 0 ) = 0 )
3736adantr 480 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → ( 0 (.r𝑆) 0 ) = 0 )
38 simpr 484 . . . . . . . . 9 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘(0g𝑇)) = 0 )
3938, 38oveq12d 7428 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))) = ( 0 (.r𝑆) 0 ))
40 eqid 2736 . . . . . . . . . . . . . 14 (.r𝑇) = (.r𝑇)
4113, 40, 14ringlz 20258 . . . . . . . . . . . . 13 ((𝑇 ∈ Ring ∧ (0g𝑇) ∈ 𝐵) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
421, 23, 41syl2anc2 585 . . . . . . . . . . . 12 (𝑇 ∈ (Ring ∖ NzRing) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
4342ad2antlr 727 . . . . . . . . . . 11 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
4443adantr 480 . . . . . . . . . 10 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
4544fveq2d 6885 . . . . . . . . 9 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = (𝐻‘(0g𝑇)))
4645, 38eqtrd 2771 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = 0 )
4737, 39, 463eqtr4rd 2782 . . . . . . 7 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))))
4828, 47mpdan 687 . . . . . 6 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))))
4923, 23jca 511 . . . . . . . . 9 (𝑇 ∈ Ring → ((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵))
501, 49syl 17 . . . . . . . 8 (𝑇 ∈ (Ring ∖ NzRing) → ((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵))
5150ad2antlr 727 . . . . . . 7 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵))
52 fvoveq1 7433 . . . . . . . . 9 (𝑎 = (0g𝑇) → (𝐻‘(𝑎(.r𝑇)𝑐)) = (𝐻‘((0g𝑇)(.r𝑇)𝑐)))
53 fveq2 6881 . . . . . . . . . 10 (𝑎 = (0g𝑇) → (𝐻𝑎) = (𝐻‘(0g𝑇)))
5453oveq1d 7425 . . . . . . . . 9 (𝑎 = (0g𝑇) → ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐)))
5552, 54eqeq12d 2752 . . . . . . . 8 (𝑎 = (0g𝑇) → ((𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐))))
56 oveq2 7418 . . . . . . . . . 10 (𝑐 = (0g𝑇) → ((0g𝑇)(.r𝑇)𝑐) = ((0g𝑇)(.r𝑇)(0g𝑇)))
5756fveq2d 6885 . . . . . . . . 9 (𝑐 = (0g𝑇) → (𝐻‘((0g𝑇)(.r𝑇)𝑐)) = (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))))
58 fveq2 6881 . . . . . . . . . 10 (𝑐 = (0g𝑇) → (𝐻𝑐) = (𝐻‘(0g𝑇)))
5958oveq2d 7426 . . . . . . . . 9 (𝑐 = (0g𝑇) → ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))))
6057, 59eqeq12d 2752 . . . . . . . 8 (𝑐 = (0g𝑇) → ((𝐻‘((0g𝑇)(.r𝑇)𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇)))))
6155, 602ralsng 4659 . . . . . . 7 (((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵) → (∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇)))))
6251, 61syl 17 . . . . . 6 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇)))))
6348, 62mpbird 257 . . . . 5 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))
64 raleq 3306 . . . . . . 7 (𝐵 = {(0g𝑇)} → (∀𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ ∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
6564raleqbi1dv 3321 . . . . . 6 (𝐵 = {(0g𝑇)} → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
6665adantl 481 . . . . 5 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
6763, 66mpbird 257 . . . 4 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))
6816, 67mpdan 687 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))
6920, 68jca 511 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑇 GrpHom 𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
7013, 40, 32isrnghm 20406 . 2 (𝐻 ∈ (𝑇 RngHom 𝑆) ↔ ((𝑇 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐻 ∈ (𝑇 GrpHom 𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))))
715, 69, 70sylanbrc 583 1 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 RngHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  cdif 3928  {csn 4606  cmpt 5206  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  0gc0g 17458  Grpcgrp 18921   GrpHom cghm 19200  Abelcabl 19767  Rngcrng 20117  Ringcrg 20198   RngHom crnghm 20399  NzRingcnzr 20477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-mgm 18623  df-mgmhm 18675  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-rnghm 20401  df-nzr 20478
This theorem is referenced by:  zrinitorngc  20607
  Copyright terms: Public domain W3C validator