Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrrnghm Structured version   Visualization version   GIF version

Theorem zrrnghm 45363
Description: The constant mapping to zero is a nonunital ring homomorphism from the zero ring to any nonunital ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrhm.b 𝐵 = (Base‘𝑇)
zrrhm.0 0 = (0g𝑆)
zrrhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
zrrnghm ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 RngHomo 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem zrrnghm
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4057 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring)
2 ringrng 45325 . . . . 5 (𝑇 ∈ Ring → 𝑇 ∈ Rng)
31, 2syl 17 . . . 4 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Rng)
43anim1i 614 . . 3 ((𝑇 ∈ (Ring ∖ NzRing) ∧ 𝑆 ∈ Rng) → (𝑇 ∈ Rng ∧ 𝑆 ∈ Rng))
54ancoms 458 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑇 ∈ Rng ∧ 𝑆 ∈ Rng))
6 rngabl 45323 . . . . . 6 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
7 ablgrp 19306 . . . . . 6 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
86, 7syl 17 . . . . 5 (𝑆 ∈ Rng → 𝑆 ∈ Grp)
98adantr 480 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝑆 ∈ Grp)
10 ringgrp 19703 . . . . . 6 (𝑇 ∈ Ring → 𝑇 ∈ Grp)
111, 10syl 17 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp)
1211adantl 481 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝑇 ∈ Grp)
13 zrrhm.b . . . . . 6 𝐵 = (Base‘𝑇)
14 eqid 2738 . . . . . 6 (0g𝑇) = (0g𝑇)
1513, 140ringbas 45317 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝐵 = {(0g𝑇)})
1615adantl 481 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐵 = {(0g𝑇)})
17 zrrhm.0 . . . . 5 0 = (0g𝑆)
18 zrrhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1913, 17, 18, 14c0snghm 45362 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {(0g𝑇)}) → 𝐻 ∈ (𝑇 GrpHom 𝑆))
209, 12, 16, 19syl3anc 1369 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 GrpHom 𝑆))
2118a1i 11 . . . . . . . 8 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → 𝐻 = (𝑥𝐵0 ))
22 eqidd 2739 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ 𝑥 = (0g𝑇)) → 0 = 0 )
2313, 14ring0cl 19723 . . . . . . . . . 10 (𝑇 ∈ Ring → (0g𝑇) ∈ 𝐵)
241, 23syl 17 . . . . . . . . 9 (𝑇 ∈ (Ring ∖ NzRing) → (0g𝑇) ∈ 𝐵)
2524ad2antlr 723 . . . . . . . 8 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (0g𝑇) ∈ 𝐵)
2617fvexi 6770 . . . . . . . . 9 0 ∈ V
2726a1i 11 . . . . . . . 8 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → 0 ∈ V)
2821, 22, 25, 27fvmptd 6864 . . . . . . 7 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (𝐻‘(0g𝑇)) = 0 )
29 eqid 2738 . . . . . . . . . . . . . 14 (Base‘𝑆) = (Base‘𝑆)
3029, 17grpidcl 18522 . . . . . . . . . . . . 13 (𝑆 ∈ Grp → 0 ∈ (Base‘𝑆))
318, 30syl 17 . . . . . . . . . . . 12 (𝑆 ∈ Rng → 0 ∈ (Base‘𝑆))
32 eqid 2738 . . . . . . . . . . . . 13 (.r𝑆) = (.r𝑆)
3329, 32, 17rnglz 45330 . . . . . . . . . . . 12 ((𝑆 ∈ Rng ∧ 0 ∈ (Base‘𝑆)) → ( 0 (.r𝑆) 0 ) = 0 )
3431, 33mpdan 683 . . . . . . . . . . 11 (𝑆 ∈ Rng → ( 0 (.r𝑆) 0 ) = 0 )
3534adantr 480 . . . . . . . . . 10 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → ( 0 (.r𝑆) 0 ) = 0 )
3635adantr 480 . . . . . . . . 9 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ( 0 (.r𝑆) 0 ) = 0 )
3736adantr 480 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → ( 0 (.r𝑆) 0 ) = 0 )
38 simpr 484 . . . . . . . . 9 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘(0g𝑇)) = 0 )
3938, 38oveq12d 7273 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))) = ( 0 (.r𝑆) 0 ))
40 eqid 2738 . . . . . . . . . . . . . 14 (.r𝑇) = (.r𝑇)
4113, 40, 14ringlz 19741 . . . . . . . . . . . . 13 ((𝑇 ∈ Ring ∧ (0g𝑇) ∈ 𝐵) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
421, 23, 41syl2anc2 584 . . . . . . . . . . . 12 (𝑇 ∈ (Ring ∖ NzRing) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
4342ad2antlr 723 . . . . . . . . . . 11 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
4443adantr 480 . . . . . . . . . 10 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
4544fveq2d 6760 . . . . . . . . 9 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = (𝐻‘(0g𝑇)))
4645, 38eqtrd 2778 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = 0 )
4737, 39, 463eqtr4rd 2789 . . . . . . 7 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))))
4828, 47mpdan 683 . . . . . 6 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))))
4923, 23jca 511 . . . . . . . . 9 (𝑇 ∈ Ring → ((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵))
501, 49syl 17 . . . . . . . 8 (𝑇 ∈ (Ring ∖ NzRing) → ((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵))
5150ad2antlr 723 . . . . . . 7 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵))
52 fvoveq1 7278 . . . . . . . . 9 (𝑎 = (0g𝑇) → (𝐻‘(𝑎(.r𝑇)𝑐)) = (𝐻‘((0g𝑇)(.r𝑇)𝑐)))
53 fveq2 6756 . . . . . . . . . 10 (𝑎 = (0g𝑇) → (𝐻𝑎) = (𝐻‘(0g𝑇)))
5453oveq1d 7270 . . . . . . . . 9 (𝑎 = (0g𝑇) → ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐)))
5552, 54eqeq12d 2754 . . . . . . . 8 (𝑎 = (0g𝑇) → ((𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐))))
56 oveq2 7263 . . . . . . . . . 10 (𝑐 = (0g𝑇) → ((0g𝑇)(.r𝑇)𝑐) = ((0g𝑇)(.r𝑇)(0g𝑇)))
5756fveq2d 6760 . . . . . . . . 9 (𝑐 = (0g𝑇) → (𝐻‘((0g𝑇)(.r𝑇)𝑐)) = (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))))
58 fveq2 6756 . . . . . . . . . 10 (𝑐 = (0g𝑇) → (𝐻𝑐) = (𝐻‘(0g𝑇)))
5958oveq2d 7271 . . . . . . . . 9 (𝑐 = (0g𝑇) → ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))))
6057, 59eqeq12d 2754 . . . . . . . 8 (𝑐 = (0g𝑇) → ((𝐻‘((0g𝑇)(.r𝑇)𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇)))))
6155, 602ralsng 4609 . . . . . . 7 (((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵) → (∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇)))))
6251, 61syl 17 . . . . . 6 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇)))))
6348, 62mpbird 256 . . . . 5 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))
64 raleq 3333 . . . . . . 7 (𝐵 = {(0g𝑇)} → (∀𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ ∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
6564raleqbi1dv 3331 . . . . . 6 (𝐵 = {(0g𝑇)} → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
6665adantl 481 . . . . 5 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
6763, 66mpbird 256 . . . 4 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))
6816, 67mpdan 683 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))
6920, 68jca 511 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑇 GrpHom 𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
7013, 40, 32isrnghm 45338 . 2 (𝐻 ∈ (𝑇 RngHomo 𝑆) ↔ ((𝑇 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐻 ∈ (𝑇 GrpHom 𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))))
715, 69, 70sylanbrc 582 1 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 RngHomo 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  {csn 4558  cmpt 5153  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  0gc0g 17067  Grpcgrp 18492   GrpHom cghm 18746  Abelcabl 19302  Ringcrg 19698  NzRingcnzr 20441  Rngcrng 45320   RngHomo crngh 45331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-ghm 18747  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-nzr 20442  df-mgmhm 45221  df-rng0 45321  df-rnghomo 45333
This theorem is referenced by:  zrinitorngc  45446
  Copyright terms: Public domain W3C validator