MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrrnghm Structured version   Visualization version   GIF version

Theorem zrrnghm 20451
Description: The constant mapping to zero is a non-unital ring homomorphism from the zero ring to any non-unital ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrnghm.b 𝐵 = (Base‘𝑇)
zrrnghm.0 0 = (0g𝑆)
zrrnghm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
zrrnghm ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 RngHom 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem zrrnghm
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4078 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring)
2 ringrng 20203 . . . . 5 (𝑇 ∈ Ring → 𝑇 ∈ Rng)
31, 2syl 17 . . . 4 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Rng)
43anim1i 615 . . 3 ((𝑇 ∈ (Ring ∖ NzRing) ∧ 𝑆 ∈ Rng) → (𝑇 ∈ Rng ∧ 𝑆 ∈ Rng))
54ancoms 458 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑇 ∈ Rng ∧ 𝑆 ∈ Rng))
6 rngabl 20073 . . . . . 6 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
7 ablgrp 19697 . . . . . 6 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
86, 7syl 17 . . . . 5 (𝑆 ∈ Rng → 𝑆 ∈ Grp)
98adantr 480 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝑆 ∈ Grp)
10 ringgrp 20156 . . . . . 6 (𝑇 ∈ Ring → 𝑇 ∈ Grp)
111, 10syl 17 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp)
1211adantl 481 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝑇 ∈ Grp)
13 zrrnghm.b . . . . . 6 𝐵 = (Base‘𝑇)
14 eqid 2731 . . . . . 6 (0g𝑇) = (0g𝑇)
1513, 140ringbas 20443 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝐵 = {(0g𝑇)})
1615adantl 481 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐵 = {(0g𝑇)})
17 zrrnghm.0 . . . . 5 0 = (0g𝑆)
18 zrrnghm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1913, 17, 18, 14c0snghm 20382 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {(0g𝑇)}) → 𝐻 ∈ (𝑇 GrpHom 𝑆))
209, 12, 16, 19syl3anc 1373 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 GrpHom 𝑆))
2118a1i 11 . . . . . . . 8 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → 𝐻 = (𝑥𝐵0 ))
22 eqidd 2732 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ 𝑥 = (0g𝑇)) → 0 = 0 )
2313, 14ring0cl 20185 . . . . . . . . . 10 (𝑇 ∈ Ring → (0g𝑇) ∈ 𝐵)
241, 23syl 17 . . . . . . . . 9 (𝑇 ∈ (Ring ∖ NzRing) → (0g𝑇) ∈ 𝐵)
2524ad2antlr 727 . . . . . . . 8 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (0g𝑇) ∈ 𝐵)
2617fvexi 6836 . . . . . . . . 9 0 ∈ V
2726a1i 11 . . . . . . . 8 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → 0 ∈ V)
2821, 22, 25, 27fvmptd 6936 . . . . . . 7 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (𝐻‘(0g𝑇)) = 0 )
29 eqid 2731 . . . . . . . . . . . . . 14 (Base‘𝑆) = (Base‘𝑆)
3029, 17grpidcl 18878 . . . . . . . . . . . . 13 (𝑆 ∈ Grp → 0 ∈ (Base‘𝑆))
318, 30syl 17 . . . . . . . . . . . 12 (𝑆 ∈ Rng → 0 ∈ (Base‘𝑆))
32 eqid 2731 . . . . . . . . . . . . 13 (.r𝑆) = (.r𝑆)
3329, 32, 17rnglz 20083 . . . . . . . . . . . 12 ((𝑆 ∈ Rng ∧ 0 ∈ (Base‘𝑆)) → ( 0 (.r𝑆) 0 ) = 0 )
3431, 33mpdan 687 . . . . . . . . . . 11 (𝑆 ∈ Rng → ( 0 (.r𝑆) 0 ) = 0 )
3534adantr 480 . . . . . . . . . 10 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → ( 0 (.r𝑆) 0 ) = 0 )
3635adantr 480 . . . . . . . . 9 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ( 0 (.r𝑆) 0 ) = 0 )
3736adantr 480 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → ( 0 (.r𝑆) 0 ) = 0 )
38 simpr 484 . . . . . . . . 9 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘(0g𝑇)) = 0 )
3938, 38oveq12d 7364 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))) = ( 0 (.r𝑆) 0 ))
40 eqid 2731 . . . . . . . . . . . . . 14 (.r𝑇) = (.r𝑇)
4113, 40, 14ringlz 20211 . . . . . . . . . . . . 13 ((𝑇 ∈ Ring ∧ (0g𝑇) ∈ 𝐵) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
421, 23, 41syl2anc2 585 . . . . . . . . . . . 12 (𝑇 ∈ (Ring ∖ NzRing) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
4342ad2antlr 727 . . . . . . . . . . 11 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
4443adantr 480 . . . . . . . . . 10 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
4544fveq2d 6826 . . . . . . . . 9 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = (𝐻‘(0g𝑇)))
4645, 38eqtrd 2766 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = 0 )
4737, 39, 463eqtr4rd 2777 . . . . . . 7 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))))
4828, 47mpdan 687 . . . . . 6 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))))
4923, 23jca 511 . . . . . . . . 9 (𝑇 ∈ Ring → ((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵))
501, 49syl 17 . . . . . . . 8 (𝑇 ∈ (Ring ∖ NzRing) → ((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵))
5150ad2antlr 727 . . . . . . 7 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵))
52 fvoveq1 7369 . . . . . . . . 9 (𝑎 = (0g𝑇) → (𝐻‘(𝑎(.r𝑇)𝑐)) = (𝐻‘((0g𝑇)(.r𝑇)𝑐)))
53 fveq2 6822 . . . . . . . . . 10 (𝑎 = (0g𝑇) → (𝐻𝑎) = (𝐻‘(0g𝑇)))
5453oveq1d 7361 . . . . . . . . 9 (𝑎 = (0g𝑇) → ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐)))
5552, 54eqeq12d 2747 . . . . . . . 8 (𝑎 = (0g𝑇) → ((𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐))))
56 oveq2 7354 . . . . . . . . . 10 (𝑐 = (0g𝑇) → ((0g𝑇)(.r𝑇)𝑐) = ((0g𝑇)(.r𝑇)(0g𝑇)))
5756fveq2d 6826 . . . . . . . . 9 (𝑐 = (0g𝑇) → (𝐻‘((0g𝑇)(.r𝑇)𝑐)) = (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))))
58 fveq2 6822 . . . . . . . . . 10 (𝑐 = (0g𝑇) → (𝐻𝑐) = (𝐻‘(0g𝑇)))
5958oveq2d 7362 . . . . . . . . 9 (𝑐 = (0g𝑇) → ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))))
6057, 59eqeq12d 2747 . . . . . . . 8 (𝑐 = (0g𝑇) → ((𝐻‘((0g𝑇)(.r𝑇)𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇)))))
6155, 602ralsng 4628 . . . . . . 7 (((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵) → (∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇)))))
6251, 61syl 17 . . . . . 6 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇)))))
6348, 62mpbird 257 . . . . 5 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))
64 raleq 3289 . . . . . . 7 (𝐵 = {(0g𝑇)} → (∀𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ ∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
6564raleqbi1dv 3304 . . . . . 6 (𝐵 = {(0g𝑇)} → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
6665adantl 481 . . . . 5 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
6763, 66mpbird 257 . . . 4 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))
6816, 67mpdan 687 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))
6920, 68jca 511 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑇 GrpHom 𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
7013, 40, 32isrnghm 20359 . 2 (𝐻 ∈ (𝑇 RngHom 𝑆) ↔ ((𝑇 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐻 ∈ (𝑇 GrpHom 𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))))
715, 69, 70sylanbrc 583 1 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 RngHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cdif 3894  {csn 4573  cmpt 5170  cfv 6481  (class class class)co 7346  Basecbs 17120  .rcmulr 17162  0gc0g 17343  Grpcgrp 18846   GrpHom cghm 19124  Abelcabl 19693  Rngcrng 20070  Ringcrg 20151   RngHom crnghm 20352  NzRingcnzr 20427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18548  df-mgmhm 18600  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-rnghm 20354  df-nzr 20428
This theorem is referenced by:  zrinitorngc  20557
  Copyright terms: Public domain W3C validator