MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrrnghm Structured version   Visualization version   GIF version

Theorem zrrnghm 20445
Description: The constant mapping to zero is a non-unital ring homomorphism from the zero ring to any non-unital ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrnghm.b 𝐵 = (Base‘𝑇)
zrrnghm.0 0 = (0g𝑆)
zrrnghm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
zrrnghm ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 RngHom 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem zrrnghm
Dummy variables 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4094 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring)
2 ringrng 20194 . . . . 5 (𝑇 ∈ Ring → 𝑇 ∈ Rng)
31, 2syl 17 . . . 4 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Rng)
43anim1i 615 . . 3 ((𝑇 ∈ (Ring ∖ NzRing) ∧ 𝑆 ∈ Rng) → (𝑇 ∈ Rng ∧ 𝑆 ∈ Rng))
54ancoms 458 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑇 ∈ Rng ∧ 𝑆 ∈ Rng))
6 rngabl 20064 . . . . . 6 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
7 ablgrp 19715 . . . . . 6 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
86, 7syl 17 . . . . 5 (𝑆 ∈ Rng → 𝑆 ∈ Grp)
98adantr 480 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝑆 ∈ Grp)
10 ringgrp 20147 . . . . . 6 (𝑇 ∈ Ring → 𝑇 ∈ Grp)
111, 10syl 17 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp)
1211adantl 481 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝑇 ∈ Grp)
13 zrrnghm.b . . . . . 6 𝐵 = (Base‘𝑇)
14 eqid 2729 . . . . . 6 (0g𝑇) = (0g𝑇)
1513, 140ringbas 20437 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → 𝐵 = {(0g𝑇)})
1615adantl 481 . . . 4 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐵 = {(0g𝑇)})
17 zrrnghm.0 . . . . 5 0 = (0g𝑆)
18 zrrnghm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1913, 17, 18, 14c0snghm 20373 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {(0g𝑇)}) → 𝐻 ∈ (𝑇 GrpHom 𝑆))
209, 12, 16, 19syl3anc 1373 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 GrpHom 𝑆))
2118a1i 11 . . . . . . . 8 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → 𝐻 = (𝑥𝐵0 ))
22 eqidd 2730 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ 𝑥 = (0g𝑇)) → 0 = 0 )
2313, 14ring0cl 20176 . . . . . . . . . 10 (𝑇 ∈ Ring → (0g𝑇) ∈ 𝐵)
241, 23syl 17 . . . . . . . . 9 (𝑇 ∈ (Ring ∖ NzRing) → (0g𝑇) ∈ 𝐵)
2524ad2antlr 727 . . . . . . . 8 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (0g𝑇) ∈ 𝐵)
2617fvexi 6872 . . . . . . . . 9 0 ∈ V
2726a1i 11 . . . . . . . 8 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → 0 ∈ V)
2821, 22, 25, 27fvmptd 6975 . . . . . . 7 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (𝐻‘(0g𝑇)) = 0 )
29 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝑆) = (Base‘𝑆)
3029, 17grpidcl 18897 . . . . . . . . . . . . 13 (𝑆 ∈ Grp → 0 ∈ (Base‘𝑆))
318, 30syl 17 . . . . . . . . . . . 12 (𝑆 ∈ Rng → 0 ∈ (Base‘𝑆))
32 eqid 2729 . . . . . . . . . . . . 13 (.r𝑆) = (.r𝑆)
3329, 32, 17rnglz 20074 . . . . . . . . . . . 12 ((𝑆 ∈ Rng ∧ 0 ∈ (Base‘𝑆)) → ( 0 (.r𝑆) 0 ) = 0 )
3431, 33mpdan 687 . . . . . . . . . . 11 (𝑆 ∈ Rng → ( 0 (.r𝑆) 0 ) = 0 )
3534adantr 480 . . . . . . . . . 10 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → ( 0 (.r𝑆) 0 ) = 0 )
3635adantr 480 . . . . . . . . 9 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ( 0 (.r𝑆) 0 ) = 0 )
3736adantr 480 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → ( 0 (.r𝑆) 0 ) = 0 )
38 simpr 484 . . . . . . . . 9 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘(0g𝑇)) = 0 )
3938, 38oveq12d 7405 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))) = ( 0 (.r𝑆) 0 ))
40 eqid 2729 . . . . . . . . . . . . . 14 (.r𝑇) = (.r𝑇)
4113, 40, 14ringlz 20202 . . . . . . . . . . . . 13 ((𝑇 ∈ Ring ∧ (0g𝑇) ∈ 𝐵) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
421, 23, 41syl2anc2 585 . . . . . . . . . . . 12 (𝑇 ∈ (Ring ∖ NzRing) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
4342ad2antlr 727 . . . . . . . . . . 11 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
4443adantr 480 . . . . . . . . . 10 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → ((0g𝑇)(.r𝑇)(0g𝑇)) = (0g𝑇))
4544fveq2d 6862 . . . . . . . . 9 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = (𝐻‘(0g𝑇)))
4645, 38eqtrd 2764 . . . . . . . 8 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = 0 )
4737, 39, 463eqtr4rd 2775 . . . . . . 7 ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) ∧ (𝐻‘(0g𝑇)) = 0 ) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))))
4828, 47mpdan 687 . . . . . 6 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))))
4923, 23jca 511 . . . . . . . . 9 (𝑇 ∈ Ring → ((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵))
501, 49syl 17 . . . . . . . 8 (𝑇 ∈ (Ring ∖ NzRing) → ((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵))
5150ad2antlr 727 . . . . . . 7 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵))
52 fvoveq1 7410 . . . . . . . . 9 (𝑎 = (0g𝑇) → (𝐻‘(𝑎(.r𝑇)𝑐)) = (𝐻‘((0g𝑇)(.r𝑇)𝑐)))
53 fveq2 6858 . . . . . . . . . 10 (𝑎 = (0g𝑇) → (𝐻𝑎) = (𝐻‘(0g𝑇)))
5453oveq1d 7402 . . . . . . . . 9 (𝑎 = (0g𝑇) → ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐)))
5552, 54eqeq12d 2745 . . . . . . . 8 (𝑎 = (0g𝑇) → ((𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐))))
56 oveq2 7395 . . . . . . . . . 10 (𝑐 = (0g𝑇) → ((0g𝑇)(.r𝑇)𝑐) = ((0g𝑇)(.r𝑇)(0g𝑇)))
5756fveq2d 6862 . . . . . . . . 9 (𝑐 = (0g𝑇) → (𝐻‘((0g𝑇)(.r𝑇)𝑐)) = (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))))
58 fveq2 6858 . . . . . . . . . 10 (𝑐 = (0g𝑇) → (𝐻𝑐) = (𝐻‘(0g𝑇)))
5958oveq2d 7403 . . . . . . . . 9 (𝑐 = (0g𝑇) → ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇))))
6057, 59eqeq12d 2745 . . . . . . . 8 (𝑐 = (0g𝑇) → ((𝐻‘((0g𝑇)(.r𝑇)𝑐)) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇)))))
6155, 602ralsng 4642 . . . . . . 7 (((0g𝑇) ∈ 𝐵 ∧ (0g𝑇) ∈ 𝐵) → (∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇)))))
6251, 61syl 17 . . . . . 6 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ (𝐻‘((0g𝑇)(.r𝑇)(0g𝑇))) = ((𝐻‘(0g𝑇))(.r𝑆)(𝐻‘(0g𝑇)))))
6348, 62mpbird 257 . . . . 5 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))
64 raleq 3296 . . . . . . 7 (𝐵 = {(0g𝑇)} → (∀𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ ∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
6564raleqbi1dv 3311 . . . . . 6 (𝐵 = {(0g𝑇)} → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
6665adantl 481 . . . . 5 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → (∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)) ↔ ∀𝑎 ∈ {(0g𝑇)}∀𝑐 ∈ {(0g𝑇)} (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
6763, 66mpbird 257 . . . 4 (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) ∧ 𝐵 = {(0g𝑇)}) → ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))
6816, 67mpdan 687 . . 3 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))
6920, 68jca 511 . 2 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑇 GrpHom 𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐))))
7013, 40, 32isrnghm 20350 . 2 (𝐻 ∈ (𝑇 RngHom 𝑆) ↔ ((𝑇 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐻 ∈ (𝑇 GrpHom 𝑆) ∧ ∀𝑎𝐵𝑐𝐵 (𝐻‘(𝑎(.r𝑇)𝑐)) = ((𝐻𝑎)(.r𝑆)(𝐻𝑐)))))
715, 69, 70sylanbrc 583 1 ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 RngHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  {csn 4589  cmpt 5188  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  0gc0g 17402  Grpcgrp 18865   GrpHom cghm 19144  Abelcabl 19711  Rngcrng 20061  Ringcrg 20142   RngHom crnghm 20343  NzRingcnzr 20421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mgm 18567  df-mgmhm 18619  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-rnghm 20345  df-nzr 20422
This theorem is referenced by:  zrinitorngc  20551
  Copyright terms: Public domain W3C validator