| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eldifi 4131 | . . . . 5
⊢ (𝑇 ∈ (Ring ∖ NzRing)
→ 𝑇 ∈
Ring) | 
| 2 |  | ringrng 20282 | . . . . 5
⊢ (𝑇 ∈ Ring → 𝑇 ∈ Rng) | 
| 3 | 1, 2 | syl 17 | . . . 4
⊢ (𝑇 ∈ (Ring ∖ NzRing)
→ 𝑇 ∈
Rng) | 
| 4 | 3 | anim1i 615 | . . 3
⊢ ((𝑇 ∈ (Ring ∖ NzRing)
∧ 𝑆 ∈ Rng) →
(𝑇 ∈ Rng ∧ 𝑆 ∈ Rng)) | 
| 5 | 4 | ancoms 458 | . 2
⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
→ (𝑇 ∈ Rng ∧
𝑆 ∈
Rng)) | 
| 6 |  | rngabl 20152 | . . . . . 6
⊢ (𝑆 ∈ Rng → 𝑆 ∈ Abel) | 
| 7 |  | ablgrp 19803 | . . . . . 6
⊢ (𝑆 ∈ Abel → 𝑆 ∈ Grp) | 
| 8 | 6, 7 | syl 17 | . . . . 5
⊢ (𝑆 ∈ Rng → 𝑆 ∈ Grp) | 
| 9 | 8 | adantr 480 | . . . 4
⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
→ 𝑆 ∈
Grp) | 
| 10 |  | ringgrp 20235 | . . . . . 6
⊢ (𝑇 ∈ Ring → 𝑇 ∈ Grp) | 
| 11 | 1, 10 | syl 17 | . . . . 5
⊢ (𝑇 ∈ (Ring ∖ NzRing)
→ 𝑇 ∈
Grp) | 
| 12 | 11 | adantl 481 | . . . 4
⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
→ 𝑇 ∈
Grp) | 
| 13 |  | zrrnghm.b | . . . . . 6
⊢ 𝐵 = (Base‘𝑇) | 
| 14 |  | eqid 2737 | . . . . . 6
⊢
(0g‘𝑇) = (0g‘𝑇) | 
| 15 | 13, 14 | 0ringbas 20528 | . . . . 5
⊢ (𝑇 ∈ (Ring ∖ NzRing)
→ 𝐵 =
{(0g‘𝑇)}) | 
| 16 | 15 | adantl 481 | . . . 4
⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
→ 𝐵 =
{(0g‘𝑇)}) | 
| 17 |  | zrrnghm.0 | . . . . 5
⊢  0 =
(0g‘𝑆) | 
| 18 |  | zrrnghm.h | . . . . 5
⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | 
| 19 | 13, 17, 18, 14 | c0snghm 20464 | . . . 4
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ∧ 𝐵 = {(0g‘𝑇)}) → 𝐻 ∈ (𝑇 GrpHom 𝑆)) | 
| 20 | 9, 12, 16, 19 | syl3anc 1373 | . . 3
⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
→ 𝐻 ∈ (𝑇 GrpHom 𝑆)) | 
| 21 | 18 | a1i 11 | . . . . . . . 8
⊢ (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
→ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) | 
| 22 |  | eqidd 2738 | . . . . . . . 8
⊢ ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
∧ 𝑥 =
(0g‘𝑇))
→ 0
= 0
) | 
| 23 | 13, 14 | ring0cl 20264 | . . . . . . . . . 10
⊢ (𝑇 ∈ Ring →
(0g‘𝑇)
∈ 𝐵) | 
| 24 | 1, 23 | syl 17 | . . . . . . . . 9
⊢ (𝑇 ∈ (Ring ∖ NzRing)
→ (0g‘𝑇) ∈ 𝐵) | 
| 25 | 24 | ad2antlr 727 | . . . . . . . 8
⊢ (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
→ (0g‘𝑇) ∈ 𝐵) | 
| 26 | 17 | fvexi 6920 | . . . . . . . . 9
⊢  0 ∈
V | 
| 27 | 26 | a1i 11 | . . . . . . . 8
⊢ (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
→ 0
∈ V) | 
| 28 | 21, 22, 25, 27 | fvmptd 7023 | . . . . . . 7
⊢ (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
→ (𝐻‘(0g‘𝑇)) = 0 ) | 
| 29 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 30 | 29, 17 | grpidcl 18983 | . . . . . . . . . . . . 13
⊢ (𝑆 ∈ Grp → 0 ∈
(Base‘𝑆)) | 
| 31 | 8, 30 | syl 17 | . . . . . . . . . . . 12
⊢ (𝑆 ∈ Rng → 0 ∈
(Base‘𝑆)) | 
| 32 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢
(.r‘𝑆) = (.r‘𝑆) | 
| 33 | 29, 32, 17 | rnglz 20162 | . . . . . . . . . . . 12
⊢ ((𝑆 ∈ Rng ∧ 0 ∈
(Base‘𝑆)) → (
0
(.r‘𝑆)
0 ) =
0
) | 
| 34 | 31, 33 | mpdan 687 | . . . . . . . . . . 11
⊢ (𝑆 ∈ Rng → ( 0
(.r‘𝑆)
0 ) =
0
) | 
| 35 | 34 | adantr 480 | . . . . . . . . . 10
⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
→ ( 0 (.r‘𝑆) 0 ) = 0 ) | 
| 36 | 35 | adantr 480 | . . . . . . . . 9
⊢ (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
→ ( 0 (.r‘𝑆) 0 ) = 0 ) | 
| 37 | 36 | adantr 480 | . . . . . . . 8
⊢ ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
∧ (𝐻‘(0g‘𝑇)) = 0 ) → ( 0
(.r‘𝑆)
0 ) =
0
) | 
| 38 |  | simpr 484 | . . . . . . . . 9
⊢ ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
∧ (𝐻‘(0g‘𝑇)) = 0 ) → (𝐻‘(0g‘𝑇)) = 0 ) | 
| 39 | 38, 38 | oveq12d 7449 | . . . . . . . 8
⊢ ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
∧ (𝐻‘(0g‘𝑇)) = 0 ) → ((𝐻‘(0g‘𝑇))(.r‘𝑆)(𝐻‘(0g‘𝑇))) = ( 0 (.r‘𝑆) 0 )) | 
| 40 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢
(.r‘𝑇) = (.r‘𝑇) | 
| 41 | 13, 40, 14 | ringlz 20290 | . . . . . . . . . . . . 13
⊢ ((𝑇 ∈ Ring ∧
(0g‘𝑇)
∈ 𝐵) →
((0g‘𝑇)(.r‘𝑇)(0g‘𝑇)) = (0g‘𝑇)) | 
| 42 | 1, 23, 41 | syl2anc2 585 | . . . . . . . . . . . 12
⊢ (𝑇 ∈ (Ring ∖ NzRing)
→ ((0g‘𝑇)(.r‘𝑇)(0g‘𝑇)) = (0g‘𝑇)) | 
| 43 | 42 | ad2antlr 727 | . . . . . . . . . . 11
⊢ (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
→ ((0g‘𝑇)(.r‘𝑇)(0g‘𝑇)) = (0g‘𝑇)) | 
| 44 | 43 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
∧ (𝐻‘(0g‘𝑇)) = 0 ) →
((0g‘𝑇)(.r‘𝑇)(0g‘𝑇)) = (0g‘𝑇)) | 
| 45 | 44 | fveq2d 6910 | . . . . . . . . 9
⊢ ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
∧ (𝐻‘(0g‘𝑇)) = 0 ) → (𝐻‘((0g‘𝑇)(.r‘𝑇)(0g‘𝑇))) = (𝐻‘(0g‘𝑇))) | 
| 46 | 45, 38 | eqtrd 2777 | . . . . . . . 8
⊢ ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
∧ (𝐻‘(0g‘𝑇)) = 0 ) → (𝐻‘((0g‘𝑇)(.r‘𝑇)(0g‘𝑇))) = 0 ) | 
| 47 | 37, 39, 46 | 3eqtr4rd 2788 | . . . . . . 7
⊢ ((((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
∧ (𝐻‘(0g‘𝑇)) = 0 ) → (𝐻‘((0g‘𝑇)(.r‘𝑇)(0g‘𝑇))) = ((𝐻‘(0g‘𝑇))(.r‘𝑆)(𝐻‘(0g‘𝑇)))) | 
| 48 | 28, 47 | mpdan 687 | . . . . . 6
⊢ (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
→ (𝐻‘((0g‘𝑇)(.r‘𝑇)(0g‘𝑇))) = ((𝐻‘(0g‘𝑇))(.r‘𝑆)(𝐻‘(0g‘𝑇)))) | 
| 49 | 23, 23 | jca 511 | . . . . . . . . 9
⊢ (𝑇 ∈ Ring →
((0g‘𝑇)
∈ 𝐵 ∧
(0g‘𝑇)
∈ 𝐵)) | 
| 50 | 1, 49 | syl 17 | . . . . . . . 8
⊢ (𝑇 ∈ (Ring ∖ NzRing)
→ ((0g‘𝑇) ∈ 𝐵 ∧ (0g‘𝑇) ∈ 𝐵)) | 
| 51 | 50 | ad2antlr 727 | . . . . . . 7
⊢ (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
→ ((0g‘𝑇) ∈ 𝐵 ∧ (0g‘𝑇) ∈ 𝐵)) | 
| 52 |  | fvoveq1 7454 | . . . . . . . . 9
⊢ (𝑎 = (0g‘𝑇) → (𝐻‘(𝑎(.r‘𝑇)𝑐)) = (𝐻‘((0g‘𝑇)(.r‘𝑇)𝑐))) | 
| 53 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑎 = (0g‘𝑇) → (𝐻‘𝑎) = (𝐻‘(0g‘𝑇))) | 
| 54 | 53 | oveq1d 7446 | . . . . . . . . 9
⊢ (𝑎 = (0g‘𝑇) → ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐)) = ((𝐻‘(0g‘𝑇))(.r‘𝑆)(𝐻‘𝑐))) | 
| 55 | 52, 54 | eqeq12d 2753 | . . . . . . . 8
⊢ (𝑎 = (0g‘𝑇) → ((𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘((0g‘𝑇)(.r‘𝑇)𝑐)) = ((𝐻‘(0g‘𝑇))(.r‘𝑆)(𝐻‘𝑐)))) | 
| 56 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑐 = (0g‘𝑇) →
((0g‘𝑇)(.r‘𝑇)𝑐) = ((0g‘𝑇)(.r‘𝑇)(0g‘𝑇))) | 
| 57 | 56 | fveq2d 6910 | . . . . . . . . 9
⊢ (𝑐 = (0g‘𝑇) → (𝐻‘((0g‘𝑇)(.r‘𝑇)𝑐)) = (𝐻‘((0g‘𝑇)(.r‘𝑇)(0g‘𝑇)))) | 
| 58 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑐 = (0g‘𝑇) → (𝐻‘𝑐) = (𝐻‘(0g‘𝑇))) | 
| 59 | 58 | oveq2d 7447 | . . . . . . . . 9
⊢ (𝑐 = (0g‘𝑇) → ((𝐻‘(0g‘𝑇))(.r‘𝑆)(𝐻‘𝑐)) = ((𝐻‘(0g‘𝑇))(.r‘𝑆)(𝐻‘(0g‘𝑇)))) | 
| 60 | 57, 59 | eqeq12d 2753 | . . . . . . . 8
⊢ (𝑐 = (0g‘𝑇) → ((𝐻‘((0g‘𝑇)(.r‘𝑇)𝑐)) = ((𝐻‘(0g‘𝑇))(.r‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘((0g‘𝑇)(.r‘𝑇)(0g‘𝑇))) = ((𝐻‘(0g‘𝑇))(.r‘𝑆)(𝐻‘(0g‘𝑇))))) | 
| 61 | 55, 60 | 2ralsng 4678 | . . . . . . 7
⊢
(((0g‘𝑇) ∈ 𝐵 ∧ (0g‘𝑇) ∈ 𝐵) → (∀𝑎 ∈ {(0g‘𝑇)}∀𝑐 ∈ {(0g‘𝑇)} (𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘((0g‘𝑇)(.r‘𝑇)(0g‘𝑇))) = ((𝐻‘(0g‘𝑇))(.r‘𝑆)(𝐻‘(0g‘𝑇))))) | 
| 62 | 51, 61 | syl 17 | . . . . . 6
⊢ (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
→ (∀𝑎 ∈
{(0g‘𝑇)}∀𝑐 ∈ {(0g‘𝑇)} (𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐)) ↔ (𝐻‘((0g‘𝑇)(.r‘𝑇)(0g‘𝑇))) = ((𝐻‘(0g‘𝑇))(.r‘𝑆)(𝐻‘(0g‘𝑇))))) | 
| 63 | 48, 62 | mpbird 257 | . . . . 5
⊢ (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
→ ∀𝑎 ∈
{(0g‘𝑇)}∀𝑐 ∈ {(0g‘𝑇)} (𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐))) | 
| 64 |  | raleq 3323 | . . . . . . 7
⊢ (𝐵 = {(0g‘𝑇)} → (∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐)) ↔ ∀𝑐 ∈ {(0g‘𝑇)} (𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐)))) | 
| 65 | 64 | raleqbi1dv 3338 | . . . . . 6
⊢ (𝐵 = {(0g‘𝑇)} → (∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐)) ↔ ∀𝑎 ∈ {(0g‘𝑇)}∀𝑐 ∈ {(0g‘𝑇)} (𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐)))) | 
| 66 | 65 | adantl 481 | . . . . 5
⊢ (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
→ (∀𝑎 ∈
𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐)) ↔ ∀𝑎 ∈ {(0g‘𝑇)}∀𝑐 ∈ {(0g‘𝑇)} (𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐)))) | 
| 67 | 63, 66 | mpbird 257 | . . . 4
⊢ (((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
∧ 𝐵 =
{(0g‘𝑇)})
→ ∀𝑎 ∈
𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐))) | 
| 68 | 16, 67 | mpdan 687 | . . 3
⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
→ ∀𝑎 ∈
𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐))) | 
| 69 | 20, 68 | jca 511 | . 2
⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
→ (𝐻 ∈ (𝑇 GrpHom 𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐)))) | 
| 70 | 13, 40, 32 | isrnghm 20441 | . 2
⊢ (𝐻 ∈ (𝑇 RngHom 𝑆) ↔ ((𝑇 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐻 ∈ (𝑇 GrpHom 𝑆) ∧ ∀𝑎 ∈ 𝐵 ∀𝑐 ∈ 𝐵 (𝐻‘(𝑎(.r‘𝑇)𝑐)) = ((𝐻‘𝑎)(.r‘𝑆)(𝐻‘𝑐))))) | 
| 71 | 5, 69, 70 | sylanbrc 583 | 1
⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing))
→ 𝐻 ∈ (𝑇 RngHom 𝑆)) |