Step | Hyp | Ref
| Expression |
1 | | fz1ssfz0 13334 |
. . 3
⊢
(1...𝐾) ⊆
(0...𝐾) |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → (1...𝐾) ⊆ (0...𝐾)) |
3 | | f1resfz0f1d.2 |
. 2
⊢ (𝜑 → 𝐹:(0...𝐾)⟶𝑉) |
4 | | f1resfz0f1d.3 |
. 2
⊢ (𝜑 → (𝐹 ↾ (1...𝐾)):(1...𝐾)–1-1→𝑉) |
5 | | f1resfz0f1d.1 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
6 | | 0elfz 13335 |
. . . . . 6
⊢ (𝐾 ∈ ℕ0
→ 0 ∈ (0...𝐾)) |
7 | | snssi 4746 |
. . . . . 6
⊢ (0 ∈
(0...𝐾) → {0} ⊆
(0...𝐾)) |
8 | 5, 6, 7 | 3syl 18 |
. . . . 5
⊢ (𝜑 → {0} ⊆ (0...𝐾)) |
9 | 3, 8 | fssresd 6637 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ {0}):{0}⟶𝑉) |
10 | | eqidd 2740 |
. . . . 5
⊢ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0
= 0) |
11 | | 0nn0 12231 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
12 | | fveqeq2 6777 |
. . . . . . . 8
⊢ (𝑥 = 0 → (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) ↔ ((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦))) |
13 | | eqeq1 2743 |
. . . . . . . 8
⊢ (𝑥 = 0 → (𝑥 = 𝑦 ↔ 0 = 𝑦)) |
14 | 12, 13 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = 0 → ((((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) → 0 = 𝑦))) |
15 | | fveq2 6768 |
. . . . . . . . 9
⊢ (𝑦 = 0 → ((𝐹 ↾ {0})‘𝑦) = ((𝐹 ↾ {0})‘0)) |
16 | 15 | eqeq2d 2750 |
. . . . . . . 8
⊢ (𝑦 = 0 → (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) ↔ ((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0))) |
17 | | eqeq2 2751 |
. . . . . . . 8
⊢ (𝑦 = 0 → (0 = 𝑦 ↔ 0 = 0)) |
18 | 16, 17 | imbi12d 344 |
. . . . . . 7
⊢ (𝑦 = 0 → ((((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) → 0 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 =
0))) |
19 | 14, 18 | 2ralsng 4617 |
. . . . . 6
⊢ ((0
∈ ℕ0 ∧ 0 ∈ ℕ0) →
(∀𝑥 ∈
{0}∀𝑦 ∈ {0}
(((𝐹 ↾
{0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 =
0))) |
20 | 11, 11, 19 | mp2an 688 |
. . . . 5
⊢
(∀𝑥 ∈
{0}∀𝑦 ∈ {0}
(((𝐹 ↾
{0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 =
0)) |
21 | 10, 20 | mpbir 230 |
. . . 4
⊢
∀𝑥 ∈
{0}∀𝑦 ∈ {0}
(((𝐹 ↾
{0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) |
22 | | dff13 7122 |
. . . 4
⊢ ((𝐹 ↾ {0}):{0}–1-1→𝑉 ↔ ((𝐹 ↾ {0}):{0}⟶𝑉 ∧ ∀𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦))) |
23 | 9, 21, 22 | sylanblrc 589 |
. . 3
⊢ (𝜑 → (𝐹 ↾ {0}):{0}–1-1→𝑉) |
24 | | uncom 4091 |
. . . . . . . 8
⊢
((1...𝐾) ∪ {0})
= ({0} ∪ (1...𝐾)) |
25 | | fz0sn0fz1 13355 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ0
→ (0...𝐾) = ({0} ∪
(1...𝐾))) |
26 | 5, 25 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0...𝐾) = ({0} ∪ (1...𝐾))) |
27 | 24, 26 | eqtr4id 2798 |
. . . . . . 7
⊢ (𝜑 → ((1...𝐾) ∪ {0}) = (0...𝐾)) |
28 | | 0nelfz1 13257 |
. . . . . . . . . 10
⊢ 0 ∉
(1...𝐾) |
29 | 28 | neli 3052 |
. . . . . . . . 9
⊢ ¬ 0
∈ (1...𝐾) |
30 | | disjsn 4652 |
. . . . . . . . 9
⊢
(((1...𝐾) ∩ {0})
= ∅ ↔ ¬ 0 ∈ (1...𝐾)) |
31 | 29, 30 | mpbir 230 |
. . . . . . . 8
⊢
((1...𝐾) ∩ {0})
= ∅ |
32 | | uneqdifeq 4428 |
. . . . . . . 8
⊢
(((1...𝐾) ⊆
(0...𝐾) ∧ ((1...𝐾) ∩ {0}) = ∅) →
(((1...𝐾) ∪ {0}) =
(0...𝐾) ↔ ((0...𝐾) ∖ (1...𝐾)) = {0})) |
33 | 1, 31, 32 | mp2an 688 |
. . . . . . 7
⊢
(((1...𝐾) ∪ {0})
= (0...𝐾) ↔
((0...𝐾) ∖ (1...𝐾)) = {0}) |
34 | 27, 33 | sylib 217 |
. . . . . 6
⊢ (𝜑 → ((0...𝐾) ∖ (1...𝐾)) = {0}) |
35 | 34 | eqcomd 2745 |
. . . . 5
⊢ (𝜑 → {0} = ((0...𝐾) ∖ (1...𝐾))) |
36 | 35 | reseq2d 5888 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ {0}) = (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾)))) |
37 | | eqidd 2740 |
. . . 4
⊢ (𝜑 → 𝑉 = 𝑉) |
38 | 36, 35, 37 | f1eq123d 6704 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ {0}):{0}–1-1→𝑉 ↔ (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))):((0...𝐾) ∖ (1...𝐾))–1-1→𝑉)) |
39 | 23, 38 | mpbid 231 |
. 2
⊢ (𝜑 → (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))):((0...𝐾) ∖ (1...𝐾))–1-1→𝑉) |
40 | 35 | imaeq2d 5966 |
. . . 4
⊢ (𝜑 → (𝐹 “ {0}) = (𝐹 “ ((0...𝐾) ∖ (1...𝐾)))) |
41 | 40 | ineq2d 4151 |
. . 3
⊢ (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0})) = ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ ((0...𝐾) ∖ (1...𝐾))))) |
42 | | incom 4139 |
. . . 4
⊢ ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0})) |
43 | | f1resfz0f1d.4 |
. . . 4
⊢ (𝜑 → ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ∅) |
44 | 42, 43 | eqtr3id 2793 |
. . 3
⊢ (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0})) = ∅) |
45 | 41, 44 | eqtr3d 2781 |
. 2
⊢ (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ ((0...𝐾) ∖ (1...𝐾)))) = ∅) |
46 | 2, 3, 4, 39, 45 | f1resrcmplf1d 33038 |
1
⊢ (𝜑 → 𝐹:(0...𝐾)–1-1→𝑉) |