Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1resfz0f1d Structured version   Visualization version   GIF version

Theorem f1resfz0f1d 34092
Description: If a function with a sequence of nonnegative integers (starting at 0) as its domain is one-to-one when 0 is removed, and if the range of that restriction does not contain the function's value at the removed integer, then the function is itself one-to-one. (Contributed by BTernaryTau, 4-Oct-2023.)
Hypotheses
Ref Expression
f1resfz0f1d.1 (𝜑𝐾 ∈ ℕ0)
f1resfz0f1d.2 (𝜑𝐹:(0...𝐾)⟶𝑉)
f1resfz0f1d.3 (𝜑 → (𝐹 ↾ (1...𝐾)):(1...𝐾)–1-1𝑉)
f1resfz0f1d.4 (𝜑 → ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ∅)
Assertion
Ref Expression
f1resfz0f1d (𝜑𝐹:(0...𝐾)–1-1𝑉)

Proof of Theorem f1resfz0f1d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fz1ssfz0 13594 . . 3 (1...𝐾) ⊆ (0...𝐾)
21a1i 11 . 2 (𝜑 → (1...𝐾) ⊆ (0...𝐾))
3 f1resfz0f1d.2 . 2 (𝜑𝐹:(0...𝐾)⟶𝑉)
4 f1resfz0f1d.3 . 2 (𝜑 → (𝐹 ↾ (1...𝐾)):(1...𝐾)–1-1𝑉)
5 f1resfz0f1d.1 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
6 0elfz 13595 . . . . . 6 (𝐾 ∈ ℕ0 → 0 ∈ (0...𝐾))
7 snssi 4811 . . . . . 6 (0 ∈ (0...𝐾) → {0} ⊆ (0...𝐾))
85, 6, 73syl 18 . . . . 5 (𝜑 → {0} ⊆ (0...𝐾))
93, 8fssresd 6756 . . . 4 (𝜑 → (𝐹 ↾ {0}):{0}⟶𝑉)
10 eqidd 2734 . . . . 5 (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0)
11 0nn0 12484 . . . . . 6 0 ∈ ℕ0
12 fveqeq2 6898 . . . . . . . 8 (𝑥 = 0 → (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) ↔ ((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦)))
13 eqeq1 2737 . . . . . . . 8 (𝑥 = 0 → (𝑥 = 𝑦 ↔ 0 = 𝑦))
1412, 13imbi12d 345 . . . . . . 7 (𝑥 = 0 → ((((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) → 0 = 𝑦)))
15 fveq2 6889 . . . . . . . . 9 (𝑦 = 0 → ((𝐹 ↾ {0})‘𝑦) = ((𝐹 ↾ {0})‘0))
1615eqeq2d 2744 . . . . . . . 8 (𝑦 = 0 → (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) ↔ ((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0)))
17 eqeq2 2745 . . . . . . . 8 (𝑦 = 0 → (0 = 𝑦 ↔ 0 = 0))
1816, 17imbi12d 345 . . . . . . 7 (𝑦 = 0 → ((((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) → 0 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0)))
1914, 182ralsng 4680 . . . . . 6 ((0 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0)))
2011, 11, 19mp2an 691 . . . . 5 (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0))
2110, 20mpbir 230 . . . 4 𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦)
22 dff13 7251 . . . 4 ((𝐹 ↾ {0}):{0}–1-1𝑉 ↔ ((𝐹 ↾ {0}):{0}⟶𝑉 ∧ ∀𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦)))
239, 21, 22sylanblrc 591 . . 3 (𝜑 → (𝐹 ↾ {0}):{0}–1-1𝑉)
24 uncom 4153 . . . . . . . 8 ((1...𝐾) ∪ {0}) = ({0} ∪ (1...𝐾))
25 fz0sn0fz1 13615 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (0...𝐾) = ({0} ∪ (1...𝐾)))
265, 25syl 17 . . . . . . . 8 (𝜑 → (0...𝐾) = ({0} ∪ (1...𝐾)))
2724, 26eqtr4id 2792 . . . . . . 7 (𝜑 → ((1...𝐾) ∪ {0}) = (0...𝐾))
28 0nelfz1 13517 . . . . . . . . . 10 0 ∉ (1...𝐾)
2928neli 3049 . . . . . . . . 9 ¬ 0 ∈ (1...𝐾)
30 disjsn 4715 . . . . . . . . 9 (((1...𝐾) ∩ {0}) = ∅ ↔ ¬ 0 ∈ (1...𝐾))
3129, 30mpbir 230 . . . . . . . 8 ((1...𝐾) ∩ {0}) = ∅
32 uneqdifeq 4492 . . . . . . . 8 (((1...𝐾) ⊆ (0...𝐾) ∧ ((1...𝐾) ∩ {0}) = ∅) → (((1...𝐾) ∪ {0}) = (0...𝐾) ↔ ((0...𝐾) ∖ (1...𝐾)) = {0}))
331, 31, 32mp2an 691 . . . . . . 7 (((1...𝐾) ∪ {0}) = (0...𝐾) ↔ ((0...𝐾) ∖ (1...𝐾)) = {0})
3427, 33sylib 217 . . . . . 6 (𝜑 → ((0...𝐾) ∖ (1...𝐾)) = {0})
3534eqcomd 2739 . . . . 5 (𝜑 → {0} = ((0...𝐾) ∖ (1...𝐾)))
3635reseq2d 5980 . . . 4 (𝜑 → (𝐹 ↾ {0}) = (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))))
37 eqidd 2734 . . . 4 (𝜑𝑉 = 𝑉)
3836, 35, 37f1eq123d 6823 . . 3 (𝜑 → ((𝐹 ↾ {0}):{0}–1-1𝑉 ↔ (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))):((0...𝐾) ∖ (1...𝐾))–1-1𝑉))
3923, 38mpbid 231 . 2 (𝜑 → (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))):((0...𝐾) ∖ (1...𝐾))–1-1𝑉)
4035imaeq2d 6058 . . . 4 (𝜑 → (𝐹 “ {0}) = (𝐹 “ ((0...𝐾) ∖ (1...𝐾))))
4140ineq2d 4212 . . 3 (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0})) = ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ ((0...𝐾) ∖ (1...𝐾)))))
42 incom 4201 . . . 4 ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0}))
43 f1resfz0f1d.4 . . . 4 (𝜑 → ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ∅)
4442, 43eqtr3id 2787 . . 3 (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0})) = ∅)
4541, 44eqtr3d 2775 . 2 (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ ((0...𝐾) ∖ (1...𝐾)))) = ∅)
462, 3, 4, 39, 45f1resrcmplf1d 34079 1 (𝜑𝐹:(0...𝐾)–1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1542  wcel 2107  wral 3062  cdif 3945  cun 3946  cin 3947  wss 3948  c0 4322  {csn 4628  cres 5678  cima 5679  wf 6537  1-1wf1 6538  cfv 6541  (class class class)co 7406  0cc0 11107  1c1 11108  0cn0 12469  ...cfz 13481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482
This theorem is referenced by:  pthhashvtx  34107
  Copyright terms: Public domain W3C validator