Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1resfz0f1d Structured version   Visualization version   GIF version

Theorem f1resfz0f1d 32471
Description: If a function with a sequence of nonnegative integers (starting at 0) as its domain is one-to-one when 0 is removed, and if the range of that restriction does not contain the function's value at the removed integer, then the function is itself one-to-one. (Contributed by BTernaryTau, 4-Oct-2023.)
Hypotheses
Ref Expression
f1resfz0f1d.1 (𝜑𝐾 ∈ ℕ0)
f1resfz0f1d.2 (𝜑𝐹:(0...𝐾)⟶𝑉)
f1resfz0f1d.3 (𝜑 → (𝐹 ↾ (1...𝐾)):(1...𝐾)–1-1𝑉)
f1resfz0f1d.4 (𝜑 → ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ∅)
Assertion
Ref Expression
f1resfz0f1d (𝜑𝐹:(0...𝐾)–1-1𝑉)

Proof of Theorem f1resfz0f1d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fz1ssfz0 12998 . . 3 (1...𝐾) ⊆ (0...𝐾)
21a1i 11 . 2 (𝜑 → (1...𝐾) ⊆ (0...𝐾))
3 f1resfz0f1d.2 . 2 (𝜑𝐹:(0...𝐾)⟶𝑉)
4 f1resfz0f1d.3 . 2 (𝜑 → (𝐹 ↾ (1...𝐾)):(1...𝐾)–1-1𝑉)
5 f1resfz0f1d.1 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
6 0elfz 12999 . . . . . 6 (𝐾 ∈ ℕ0 → 0 ∈ (0...𝐾))
7 snssi 4701 . . . . . 6 (0 ∈ (0...𝐾) → {0} ⊆ (0...𝐾))
85, 6, 73syl 18 . . . . 5 (𝜑 → {0} ⊆ (0...𝐾))
93, 8fssresd 6519 . . . 4 (𝜑 → (𝐹 ↾ {0}):{0}⟶𝑉)
10 eqidd 2799 . . . . 5 (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0)
11 0nn0 11900 . . . . . 6 0 ∈ ℕ0
12 fveqeq2 6654 . . . . . . . 8 (𝑥 = 0 → (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) ↔ ((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦)))
13 eqeq1 2802 . . . . . . . 8 (𝑥 = 0 → (𝑥 = 𝑦 ↔ 0 = 𝑦))
1412, 13imbi12d 348 . . . . . . 7 (𝑥 = 0 → ((((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) → 0 = 𝑦)))
15 fveq2 6645 . . . . . . . . 9 (𝑦 = 0 → ((𝐹 ↾ {0})‘𝑦) = ((𝐹 ↾ {0})‘0))
1615eqeq2d 2809 . . . . . . . 8 (𝑦 = 0 → (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) ↔ ((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0)))
17 eqeq2 2810 . . . . . . . 8 (𝑦 = 0 → (0 = 𝑦 ↔ 0 = 0))
1816, 17imbi12d 348 . . . . . . 7 (𝑦 = 0 → ((((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) → 0 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0)))
1914, 182ralsng 4576 . . . . . 6 ((0 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0)))
2011, 11, 19mp2an 691 . . . . 5 (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0))
2110, 20mpbir 234 . . . 4 𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦)
22 dff13 6991 . . . 4 ((𝐹 ↾ {0}):{0}–1-1𝑉 ↔ ((𝐹 ↾ {0}):{0}⟶𝑉 ∧ ∀𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦)))
239, 21, 22sylanblrc 593 . . 3 (𝜑 → (𝐹 ↾ {0}):{0}–1-1𝑉)
24 uncom 4080 . . . . . . . 8 ((1...𝐾) ∪ {0}) = ({0} ∪ (1...𝐾))
25 fz0sn0fz1 13019 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (0...𝐾) = ({0} ∪ (1...𝐾)))
265, 25syl 17 . . . . . . . 8 (𝜑 → (0...𝐾) = ({0} ∪ (1...𝐾)))
2724, 26eqtr4id 2852 . . . . . . 7 (𝜑 → ((1...𝐾) ∪ {0}) = (0...𝐾))
28 0nelfz1 12921 . . . . . . . . . 10 0 ∉ (1...𝐾)
2928neli 3093 . . . . . . . . 9 ¬ 0 ∈ (1...𝐾)
30 disjsn 4607 . . . . . . . . 9 (((1...𝐾) ∩ {0}) = ∅ ↔ ¬ 0 ∈ (1...𝐾))
3129, 30mpbir 234 . . . . . . . 8 ((1...𝐾) ∩ {0}) = ∅
32 uneqdifeq 4396 . . . . . . . 8 (((1...𝐾) ⊆ (0...𝐾) ∧ ((1...𝐾) ∩ {0}) = ∅) → (((1...𝐾) ∪ {0}) = (0...𝐾) ↔ ((0...𝐾) ∖ (1...𝐾)) = {0}))
331, 31, 32mp2an 691 . . . . . . 7 (((1...𝐾) ∪ {0}) = (0...𝐾) ↔ ((0...𝐾) ∖ (1...𝐾)) = {0})
3427, 33sylib 221 . . . . . 6 (𝜑 → ((0...𝐾) ∖ (1...𝐾)) = {0})
3534eqcomd 2804 . . . . 5 (𝜑 → {0} = ((0...𝐾) ∖ (1...𝐾)))
3635reseq2d 5818 . . . 4 (𝜑 → (𝐹 ↾ {0}) = (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))))
37 eqidd 2799 . . . 4 (𝜑𝑉 = 𝑉)
3836, 35, 37f1eq123d 6583 . . 3 (𝜑 → ((𝐹 ↾ {0}):{0}–1-1𝑉 ↔ (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))):((0...𝐾) ∖ (1...𝐾))–1-1𝑉))
3923, 38mpbid 235 . 2 (𝜑 → (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))):((0...𝐾) ∖ (1...𝐾))–1-1𝑉)
4035imaeq2d 5896 . . . 4 (𝜑 → (𝐹 “ {0}) = (𝐹 “ ((0...𝐾) ∖ (1...𝐾))))
4140ineq2d 4139 . . 3 (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0})) = ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ ((0...𝐾) ∖ (1...𝐾)))))
42 incom 4128 . . . 4 ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0}))
43 f1resfz0f1d.4 . . . 4 (𝜑 → ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ∅)
4442, 43syl5eqr 2847 . . 3 (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0})) = ∅)
4541, 44eqtr3d 2835 . 2 (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ ((0...𝐾) ∖ (1...𝐾)))) = ∅)
462, 3, 4, 39, 45f1resrcmplf1d 32470 1 (𝜑𝐹:(0...𝐾)–1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209   = wceq 1538  wcel 2111  wral 3106  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525  cres 5521  cima 5522  wf 6320  1-1wf1 6321  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527  0cn0 11885  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886
This theorem is referenced by:  pthhashvtx  32487
  Copyright terms: Public domain W3C validator