Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1resfz0f1d Structured version   Visualization version   GIF version

Theorem f1resfz0f1d 35108
Description: If a function with a sequence of nonnegative integers (starting at 0) as its domain is one-to-one when 0 is removed, and if the range of that restriction does not contain the function's value at the removed integer, then the function is itself one-to-one. (Contributed by BTernaryTau, 4-Oct-2023.)
Hypotheses
Ref Expression
f1resfz0f1d.1 (𝜑𝐾 ∈ ℕ0)
f1resfz0f1d.2 (𝜑𝐹:(0...𝐾)⟶𝑉)
f1resfz0f1d.3 (𝜑 → (𝐹 ↾ (1...𝐾)):(1...𝐾)–1-1𝑉)
f1resfz0f1d.4 (𝜑 → ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ∅)
Assertion
Ref Expression
f1resfz0f1d (𝜑𝐹:(0...𝐾)–1-1𝑉)

Proof of Theorem f1resfz0f1d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fz1ssfz0 13591 . . 3 (1...𝐾) ⊆ (0...𝐾)
21a1i 11 . 2 (𝜑 → (1...𝐾) ⊆ (0...𝐾))
3 f1resfz0f1d.2 . 2 (𝜑𝐹:(0...𝐾)⟶𝑉)
4 f1resfz0f1d.3 . 2 (𝜑 → (𝐹 ↾ (1...𝐾)):(1...𝐾)–1-1𝑉)
5 f1resfz0f1d.1 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
6 0elfz 13592 . . . . . 6 (𝐾 ∈ ℕ0 → 0 ∈ (0...𝐾))
7 snssi 4775 . . . . . 6 (0 ∈ (0...𝐾) → {0} ⊆ (0...𝐾))
85, 6, 73syl 18 . . . . 5 (𝜑 → {0} ⊆ (0...𝐾))
93, 8fssresd 6730 . . . 4 (𝜑 → (𝐹 ↾ {0}):{0}⟶𝑉)
10 eqidd 2731 . . . . 5 (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0)
11 0nn0 12464 . . . . . 6 0 ∈ ℕ0
12 fveqeq2 6870 . . . . . . . 8 (𝑥 = 0 → (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) ↔ ((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦)))
13 eqeq1 2734 . . . . . . . 8 (𝑥 = 0 → (𝑥 = 𝑦 ↔ 0 = 𝑦))
1412, 13imbi12d 344 . . . . . . 7 (𝑥 = 0 → ((((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) → 0 = 𝑦)))
15 fveq2 6861 . . . . . . . . 9 (𝑦 = 0 → ((𝐹 ↾ {0})‘𝑦) = ((𝐹 ↾ {0})‘0))
1615eqeq2d 2741 . . . . . . . 8 (𝑦 = 0 → (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) ↔ ((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0)))
17 eqeq2 2742 . . . . . . . 8 (𝑦 = 0 → (0 = 𝑦 ↔ 0 = 0))
1816, 17imbi12d 344 . . . . . . 7 (𝑦 = 0 → ((((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) → 0 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0)))
1914, 182ralsng 4645 . . . . . 6 ((0 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0)))
2011, 11, 19mp2an 692 . . . . 5 (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0))
2110, 20mpbir 231 . . . 4 𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦)
22 dff13 7232 . . . 4 ((𝐹 ↾ {0}):{0}–1-1𝑉 ↔ ((𝐹 ↾ {0}):{0}⟶𝑉 ∧ ∀𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦)))
239, 21, 22sylanblrc 590 . . 3 (𝜑 → (𝐹 ↾ {0}):{0}–1-1𝑉)
24 uncom 4124 . . . . . . . 8 ((1...𝐾) ∪ {0}) = ({0} ∪ (1...𝐾))
25 fz0sn0fz1 13613 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (0...𝐾) = ({0} ∪ (1...𝐾)))
265, 25syl 17 . . . . . . . 8 (𝜑 → (0...𝐾) = ({0} ∪ (1...𝐾)))
2724, 26eqtr4id 2784 . . . . . . 7 (𝜑 → ((1...𝐾) ∪ {0}) = (0...𝐾))
28 0nelfz1 13511 . . . . . . . . . 10 0 ∉ (1...𝐾)
2928neli 3032 . . . . . . . . 9 ¬ 0 ∈ (1...𝐾)
30 disjsn 4678 . . . . . . . . 9 (((1...𝐾) ∩ {0}) = ∅ ↔ ¬ 0 ∈ (1...𝐾))
3129, 30mpbir 231 . . . . . . . 8 ((1...𝐾) ∩ {0}) = ∅
32 uneqdifeq 4459 . . . . . . . 8 (((1...𝐾) ⊆ (0...𝐾) ∧ ((1...𝐾) ∩ {0}) = ∅) → (((1...𝐾) ∪ {0}) = (0...𝐾) ↔ ((0...𝐾) ∖ (1...𝐾)) = {0}))
331, 31, 32mp2an 692 . . . . . . 7 (((1...𝐾) ∪ {0}) = (0...𝐾) ↔ ((0...𝐾) ∖ (1...𝐾)) = {0})
3427, 33sylib 218 . . . . . 6 (𝜑 → ((0...𝐾) ∖ (1...𝐾)) = {0})
3534eqcomd 2736 . . . . 5 (𝜑 → {0} = ((0...𝐾) ∖ (1...𝐾)))
3635reseq2d 5953 . . . 4 (𝜑 → (𝐹 ↾ {0}) = (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))))
37 eqidd 2731 . . . 4 (𝜑𝑉 = 𝑉)
3836, 35, 37f1eq123d 6795 . . 3 (𝜑 → ((𝐹 ↾ {0}):{0}–1-1𝑉 ↔ (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))):((0...𝐾) ∖ (1...𝐾))–1-1𝑉))
3923, 38mpbid 232 . 2 (𝜑 → (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))):((0...𝐾) ∖ (1...𝐾))–1-1𝑉)
4035imaeq2d 6034 . . . 4 (𝜑 → (𝐹 “ {0}) = (𝐹 “ ((0...𝐾) ∖ (1...𝐾))))
4140ineq2d 4186 . . 3 (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0})) = ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ ((0...𝐾) ∖ (1...𝐾)))))
42 incom 4175 . . . 4 ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0}))
43 f1resfz0f1d.4 . . . 4 (𝜑 → ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ∅)
4442, 43eqtr3id 2779 . . 3 (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0})) = ∅)
4541, 44eqtr3d 2767 . 2 (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ ((0...𝐾) ∖ (1...𝐾)))) = ∅)
462, 3, 4, 39, 45f1resrcmplf1d 35084 1 (𝜑𝐹:(0...𝐾)–1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3045  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592  cres 5643  cima 5644  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  0cn0 12449  ...cfz 13475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476
This theorem is referenced by:  pthhashvtx  35122
  Copyright terms: Public domain W3C validator