Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1resfz0f1d Structured version   Visualization version   GIF version

Theorem f1resfz0f1d 32972
Description: If a function with a sequence of nonnegative integers (starting at 0) as its domain is one-to-one when 0 is removed, and if the range of that restriction does not contain the function's value at the removed integer, then the function is itself one-to-one. (Contributed by BTernaryTau, 4-Oct-2023.)
Hypotheses
Ref Expression
f1resfz0f1d.1 (𝜑𝐾 ∈ ℕ0)
f1resfz0f1d.2 (𝜑𝐹:(0...𝐾)⟶𝑉)
f1resfz0f1d.3 (𝜑 → (𝐹 ↾ (1...𝐾)):(1...𝐾)–1-1𝑉)
f1resfz0f1d.4 (𝜑 → ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ∅)
Assertion
Ref Expression
f1resfz0f1d (𝜑𝐹:(0...𝐾)–1-1𝑉)

Proof of Theorem f1resfz0f1d
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fz1ssfz0 13281 . . 3 (1...𝐾) ⊆ (0...𝐾)
21a1i 11 . 2 (𝜑 → (1...𝐾) ⊆ (0...𝐾))
3 f1resfz0f1d.2 . 2 (𝜑𝐹:(0...𝐾)⟶𝑉)
4 f1resfz0f1d.3 . 2 (𝜑 → (𝐹 ↾ (1...𝐾)):(1...𝐾)–1-1𝑉)
5 f1resfz0f1d.1 . . . . . 6 (𝜑𝐾 ∈ ℕ0)
6 0elfz 13282 . . . . . 6 (𝐾 ∈ ℕ0 → 0 ∈ (0...𝐾))
7 snssi 4738 . . . . . 6 (0 ∈ (0...𝐾) → {0} ⊆ (0...𝐾))
85, 6, 73syl 18 . . . . 5 (𝜑 → {0} ⊆ (0...𝐾))
93, 8fssresd 6625 . . . 4 (𝜑 → (𝐹 ↾ {0}):{0}⟶𝑉)
10 eqidd 2739 . . . . 5 (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0)
11 0nn0 12178 . . . . . 6 0 ∈ ℕ0
12 fveqeq2 6765 . . . . . . . 8 (𝑥 = 0 → (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) ↔ ((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦)))
13 eqeq1 2742 . . . . . . . 8 (𝑥 = 0 → (𝑥 = 𝑦 ↔ 0 = 𝑦))
1412, 13imbi12d 344 . . . . . . 7 (𝑥 = 0 → ((((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) → 0 = 𝑦)))
15 fveq2 6756 . . . . . . . . 9 (𝑦 = 0 → ((𝐹 ↾ {0})‘𝑦) = ((𝐹 ↾ {0})‘0))
1615eqeq2d 2749 . . . . . . . 8 (𝑦 = 0 → (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) ↔ ((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0)))
17 eqeq2 2750 . . . . . . . 8 (𝑦 = 0 → (0 = 𝑦 ↔ 0 = 0))
1816, 17imbi12d 344 . . . . . . 7 (𝑦 = 0 → ((((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘𝑦) → 0 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0)))
1914, 182ralsng 4609 . . . . . 6 ((0 ∈ ℕ0 ∧ 0 ∈ ℕ0) → (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0)))
2011, 11, 19mp2an 688 . . . . 5 (∀𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦) ↔ (((𝐹 ↾ {0})‘0) = ((𝐹 ↾ {0})‘0) → 0 = 0))
2110, 20mpbir 230 . . . 4 𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦)
22 dff13 7109 . . . 4 ((𝐹 ↾ {0}):{0}–1-1𝑉 ↔ ((𝐹 ↾ {0}):{0}⟶𝑉 ∧ ∀𝑥 ∈ {0}∀𝑦 ∈ {0} (((𝐹 ↾ {0})‘𝑥) = ((𝐹 ↾ {0})‘𝑦) → 𝑥 = 𝑦)))
239, 21, 22sylanblrc 589 . . 3 (𝜑 → (𝐹 ↾ {0}):{0}–1-1𝑉)
24 uncom 4083 . . . . . . . 8 ((1...𝐾) ∪ {0}) = ({0} ∪ (1...𝐾))
25 fz0sn0fz1 13302 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (0...𝐾) = ({0} ∪ (1...𝐾)))
265, 25syl 17 . . . . . . . 8 (𝜑 → (0...𝐾) = ({0} ∪ (1...𝐾)))
2724, 26eqtr4id 2798 . . . . . . 7 (𝜑 → ((1...𝐾) ∪ {0}) = (0...𝐾))
28 0nelfz1 13204 . . . . . . . . . 10 0 ∉ (1...𝐾)
2928neli 3050 . . . . . . . . 9 ¬ 0 ∈ (1...𝐾)
30 disjsn 4644 . . . . . . . . 9 (((1...𝐾) ∩ {0}) = ∅ ↔ ¬ 0 ∈ (1...𝐾))
3129, 30mpbir 230 . . . . . . . 8 ((1...𝐾) ∩ {0}) = ∅
32 uneqdifeq 4420 . . . . . . . 8 (((1...𝐾) ⊆ (0...𝐾) ∧ ((1...𝐾) ∩ {0}) = ∅) → (((1...𝐾) ∪ {0}) = (0...𝐾) ↔ ((0...𝐾) ∖ (1...𝐾)) = {0}))
331, 31, 32mp2an 688 . . . . . . 7 (((1...𝐾) ∪ {0}) = (0...𝐾) ↔ ((0...𝐾) ∖ (1...𝐾)) = {0})
3427, 33sylib 217 . . . . . 6 (𝜑 → ((0...𝐾) ∖ (1...𝐾)) = {0})
3534eqcomd 2744 . . . . 5 (𝜑 → {0} = ((0...𝐾) ∖ (1...𝐾)))
3635reseq2d 5880 . . . 4 (𝜑 → (𝐹 ↾ {0}) = (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))))
37 eqidd 2739 . . . 4 (𝜑𝑉 = 𝑉)
3836, 35, 37f1eq123d 6692 . . 3 (𝜑 → ((𝐹 ↾ {0}):{0}–1-1𝑉 ↔ (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))):((0...𝐾) ∖ (1...𝐾))–1-1𝑉))
3923, 38mpbid 231 . 2 (𝜑 → (𝐹 ↾ ((0...𝐾) ∖ (1...𝐾))):((0...𝐾) ∖ (1...𝐾))–1-1𝑉)
4035imaeq2d 5958 . . . 4 (𝜑 → (𝐹 “ {0}) = (𝐹 “ ((0...𝐾) ∖ (1...𝐾))))
4140ineq2d 4143 . . 3 (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0})) = ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ ((0...𝐾) ∖ (1...𝐾)))))
42 incom 4131 . . . 4 ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0}))
43 f1resfz0f1d.4 . . . 4 (𝜑 → ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ∅)
4442, 43eqtr3id 2793 . . 3 (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ {0})) = ∅)
4541, 44eqtr3d 2780 . 2 (𝜑 → ((𝐹 “ (1...𝐾)) ∩ (𝐹 “ ((0...𝐾) ∖ (1...𝐾)))) = ∅)
462, 3, 4, 39, 45f1resrcmplf1d 32959 1 (𝜑𝐹:(0...𝐾)–1-1𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2108  wral 3063  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  cres 5582  cima 5583  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  0cn0 12163  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by:  pthhashvtx  32989
  Copyright terms: Public domain W3C validator