MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  halfaddsub Structured version   Visualization version   GIF version

Theorem halfaddsub 11591
Description: Sum and difference of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007.)
Assertion
Ref Expression
halfaddsub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴 ∧ (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵))

Proof of Theorem halfaddsub
StepHypRef Expression
1 ppncan 10644 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (𝐴 + 𝐴))
213anidm13 1549 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (𝐴 + 𝐴))
3 2times 11494 . . . . . 6 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
43adantr 474 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐴) = (𝐴 + 𝐴))
52, 4eqtr4d 2864 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴𝐵)) = (2 · 𝐴))
65oveq1d 6920 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) + (𝐴𝐵)) / 2) = ((2 · 𝐴) / 2))
7 addcl 10334 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
8 subcl 10600 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
9 2cnne0 11568 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
10 divdir 11035 . . . . 5 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝐴 + 𝐵) + (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)))
119, 10mp3an3 1580 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐴 + 𝐵) + (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)))
127, 8, 11syl2anc 581 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) + (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)))
13 2cn 11426 . . . . 5 2 ∈ ℂ
14 2ne0 11462 . . . . 5 2 ≠ 0
15 divcan3 11036 . . . . 5 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐴) / 2) = 𝐴)
1613, 14, 15mp3an23 1583 . . . 4 (𝐴 ∈ ℂ → ((2 · 𝐴) / 2) = 𝐴)
1716adantr 474 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · 𝐴) / 2) = 𝐴)
186, 12, 173eqtr3d 2869 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴)
19 pnncan 10643 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
20193anidm23 1550 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (𝐵 + 𝐵))
21 2times 11494 . . . . . 6 (𝐵 ∈ ℂ → (2 · 𝐵) = (𝐵 + 𝐵))
2221adantl 475 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · 𝐵) = (𝐵 + 𝐵))
2320, 22eqtr4d 2864 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴𝐵)) = (2 · 𝐵))
2423oveq1d 6920 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − (𝐴𝐵)) / 2) = ((2 · 𝐵) / 2))
25 divsubdir 11046 . . . . 5 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝐴 + 𝐵) − (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)))
269, 25mp3an3 1580 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐴 + 𝐵) − (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)))
277, 8, 26syl2anc 581 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − (𝐴𝐵)) / 2) = (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)))
28 divcan3 11036 . . . . 5 ((𝐵 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝐵) / 2) = 𝐵)
2913, 14, 28mp3an23 1583 . . . 4 (𝐵 ∈ ℂ → ((2 · 𝐵) / 2) = 𝐵)
3029adantl 475 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · 𝐵) / 2) = 𝐵)
3124, 27, 303eqtr3d 2869 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵)
3218, 31jca 509 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵) / 2) + ((𝐴𝐵) / 2)) = 𝐴 ∧ (((𝐴 + 𝐵) / 2) − ((𝐴𝐵) / 2)) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wne 2999  (class class class)co 6905  cc 10250  0cc0 10252   + caddc 10255   · cmul 10257  cmin 10585   / cdiv 11009  2c2 11406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-2 11414
This theorem is referenced by:  addsin  15272  subsin  15273  addcos  15276  subcos  15277  ioo2bl  22966  dcubic  24986  fourierdlem79  41196
  Copyright terms: Public domain W3C validator