Proof of Theorem halfaddsub
Step | Hyp | Ref
| Expression |
1 | | ppncan 11193 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴 − 𝐵)) = (𝐴 + 𝐴)) |
2 | 1 | 3anidm13 1418 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴 − 𝐵)) = (𝐴 + 𝐴)) |
3 | | 2times 12039 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (2
· 𝐴) = (𝐴 + 𝐴)) |
4 | 3 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐴) = (𝐴 + 𝐴)) |
5 | 2, 4 | eqtr4d 2781 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴 − 𝐵)) = (2 · 𝐴)) |
6 | 5 | oveq1d 7270 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) + (𝐴 − 𝐵)) / 2) = ((2 · 𝐴) / 2)) |
7 | | addcl 10884 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
8 | | subcl 11150 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
9 | | 2cnne0 12113 |
. . . . 5
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
10 | | divdir 11588 |
. . . . 5
⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴 − 𝐵) ∈ ℂ ∧ (2 ∈ ℂ
∧ 2 ≠ 0)) → (((𝐴 + 𝐵) + (𝐴 − 𝐵)) / 2) = (((𝐴 + 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) |
11 | 9, 10 | mp3an3 1448 |
. . . 4
⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴 − 𝐵) ∈ ℂ) → (((𝐴 + 𝐵) + (𝐴 − 𝐵)) / 2) = (((𝐴 + 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) |
12 | 7, 8, 11 | syl2anc 583 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) + (𝐴 − 𝐵)) / 2) = (((𝐴 + 𝐵) / 2) + ((𝐴 − 𝐵) / 2))) |
13 | | 2cn 11978 |
. . . . 5
⊢ 2 ∈
ℂ |
14 | | 2ne0 12007 |
. . . . 5
⊢ 2 ≠
0 |
15 | | divcan3 11589 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → ((2 · 𝐴) / 2) = 𝐴) |
16 | 13, 14, 15 | mp3an23 1451 |
. . . 4
⊢ (𝐴 ∈ ℂ → ((2
· 𝐴) / 2) = 𝐴) |
17 | 16 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2
· 𝐴) / 2) = 𝐴) |
18 | 6, 12, 17 | 3eqtr3d 2786 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) + ((𝐴 − 𝐵) / 2)) = 𝐴) |
19 | | pnncan 11192 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 − 𝐵)) = (𝐵 + 𝐵)) |
20 | 19 | 3anidm23 1419 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 − 𝐵)) = (𝐵 + 𝐵)) |
21 | | 2times 12039 |
. . . . . 6
⊢ (𝐵 ∈ ℂ → (2
· 𝐵) = (𝐵 + 𝐵)) |
22 | 21 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐵) = (𝐵 + 𝐵)) |
23 | 20, 22 | eqtr4d 2781 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 − 𝐵)) = (2 · 𝐵)) |
24 | 23 | oveq1d 7270 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − (𝐴 − 𝐵)) / 2) = ((2 · 𝐵) / 2)) |
25 | | divsubdir 11599 |
. . . . 5
⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴 − 𝐵) ∈ ℂ ∧ (2 ∈ ℂ
∧ 2 ≠ 0)) → (((𝐴 + 𝐵) − (𝐴 − 𝐵)) / 2) = (((𝐴 + 𝐵) / 2) − ((𝐴 − 𝐵) / 2))) |
26 | 9, 25 | mp3an3 1448 |
. . . 4
⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴 − 𝐵) ∈ ℂ) → (((𝐴 + 𝐵) − (𝐴 − 𝐵)) / 2) = (((𝐴 + 𝐵) / 2) − ((𝐴 − 𝐵) / 2))) |
27 | 7, 8, 26 | syl2anc 583 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − (𝐴 − 𝐵)) / 2) = (((𝐴 + 𝐵) / 2) − ((𝐴 − 𝐵) / 2))) |
28 | | divcan3 11589 |
. . . . 5
⊢ ((𝐵 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → ((2 · 𝐵) / 2) = 𝐵) |
29 | 13, 14, 28 | mp3an23 1451 |
. . . 4
⊢ (𝐵 ∈ ℂ → ((2
· 𝐵) / 2) = 𝐵) |
30 | 29 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2
· 𝐵) / 2) = 𝐵) |
31 | 24, 27, 30 | 3eqtr3d 2786 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) / 2) − ((𝐴 − 𝐵) / 2)) = 𝐵) |
32 | 18, 31 | jca 511 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
((((𝐴 + 𝐵) / 2) + ((𝐴 − 𝐵) / 2)) = 𝐴 ∧ (((𝐴 + 𝐵) / 2) − ((𝐴 − 𝐵) / 2)) = 𝐵)) |