MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leaddle0 Structured version   Visualization version   GIF version

Theorem leaddle0 10834
Description: The sum of a real number and a second real number is less than the real number iff the second real number is negative. (Contributed by Alexander van der Vekens, 30-May-2018.)
Assertion
Ref Expression
leaddle0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐴𝐵 ≤ 0))

Proof of Theorem leaddle0
StepHypRef Expression
1 leaddsub2 10796 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐴𝐵 ≤ (𝐴𝐴)))
213anidm13 1544 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐴𝐵 ≤ (𝐴𝐴)))
3 recn 10313 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
43subidd 10671 . . . 4 (𝐴 ∈ ℝ → (𝐴𝐴) = 0)
54adantr 473 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐴) = 0)
65breq2d 4854 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ (𝐴𝐴) ↔ 𝐵 ≤ 0))
72, 6bitrd 271 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) ≤ 𝐴𝐵 ≤ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157   class class class wbr 4842  (class class class)co 6877  cr 10222  0cc0 10223   + caddc 10226  cle 10363  cmin 10555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2776  ax-sep 4974  ax-nul 4982  ax-pow 5034  ax-pr 5096  ax-un 7182  ax-resscn 10280  ax-1cn 10281  ax-icn 10282  ax-addcl 10283  ax-addrcl 10284  ax-mulcl 10285  ax-mulrcl 10286  ax-mulcom 10287  ax-addass 10288  ax-mulass 10289  ax-distr 10290  ax-i2m1 10291  ax-1ne0 10292  ax-1rid 10293  ax-rnegex 10294  ax-rrecex 10295  ax-cnre 10296  ax-pre-lttri 10297  ax-pre-lttrn 10298  ax-pre-ltadd 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2785  df-cleq 2791  df-clel 2794  df-nfc 2929  df-ne 2971  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3386  df-sbc 3633  df-csb 3728  df-dif 3771  df-un 3773  df-in 3775  df-ss 3782  df-nul 4115  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-op 4374  df-uni 4628  df-br 4843  df-opab 4905  df-mpt 4922  df-id 5219  df-po 5232  df-so 5233  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6063  df-fun 6102  df-fn 6103  df-f 6104  df-f1 6105  df-fo 6106  df-f1o 6107  df-fv 6108  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-er 7981  df-en 8195  df-dom 8196  df-sdom 8197  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10557  df-neg 10558
This theorem is referenced by:  fzpreddisj  12641  swrdccat3blem  13802
  Copyright terms: Public domain W3C validator