MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinvlem2 Structured version   Visualization version   GIF version

Theorem grpoidinvlem2 29745
Description: Lemma for grpoidinv 29748. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpoidinvlem2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺𝑌))

Proof of Theorem grpoidinvlem2
StepHypRef Expression
1 simprr 771 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → 𝐴𝑋)
2 simprl 769 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → 𝑌𝑋)
3 grpfo.1 . . . . . . . 8 𝑋 = ran 𝐺
43grpocl 29740 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝑌𝑋) → (𝐴𝐺𝑌) ∈ 𝑋)
543com23 1126 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑌𝑋𝐴𝑋) → (𝐴𝐺𝑌) ∈ 𝑋)
653expb 1120 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → (𝐴𝐺𝑌) ∈ 𝑋)
71, 2, 63jca 1128 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → (𝐴𝑋𝑌𝑋 ∧ (𝐴𝐺𝑌) ∈ 𝑋))
83grpoass 29743 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝑌𝑋 ∧ (𝐴𝐺𝑌) ∈ 𝑋)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))))
97, 8syldan 591 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))))
109adantr 481 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))))
11 oveq1 7412 . . . . . . 7 ((𝑌𝐺𝐴) = 𝑈 → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑈𝐺𝑌))
1211adantl 482 . . . . . 6 (((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈) → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑈𝐺𝑌))
13 simpl 483 . . . . . 6 (((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈) → (𝑈𝐺𝑌) = 𝑌)
1412, 13eqtr2d 2773 . . . . 5 (((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈) → 𝑌 = ((𝑌𝐺𝐴)𝐺𝑌))
15 id 22 . . . . . . 7 ((𝑌𝑋𝐴𝑋𝑌𝑋) → (𝑌𝑋𝐴𝑋𝑌𝑋))
16153anidm13 1420 . . . . . 6 ((𝑌𝑋𝐴𝑋) → (𝑌𝑋𝐴𝑋𝑌𝑋))
173grpoass 29743 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋𝑌𝑋)) → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑌𝐺(𝐴𝐺𝑌)))
1816, 17sylan2 593 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑌𝐺(𝐴𝐺𝑌)))
1914, 18sylan9eqr 2794 . . . 4 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → 𝑌 = (𝑌𝐺(𝐴𝐺𝑌)))
2019eqcomd 2738 . . 3 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → (𝑌𝐺(𝐴𝐺𝑌)) = 𝑌)
2120oveq2d 7421 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))) = (𝐴𝐺𝑌))
2210, 21eqtrd 2772 1 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  ran crn 5676  (class class class)co 7405  GrpOpcgr 29729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-ov 7408  df-grpo 29733
This theorem is referenced by:  grpoidinvlem3  29746
  Copyright terms: Public domain W3C validator