MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinvlem2 Structured version   Visualization version   GIF version

Theorem grpoidinvlem2 30537
Description: Lemma for grpoidinv 30540. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpoidinvlem2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺𝑌))

Proof of Theorem grpoidinvlem2
StepHypRef Expression
1 simprr 772 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → 𝐴𝑋)
2 simprl 770 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → 𝑌𝑋)
3 grpfo.1 . . . . . . . 8 𝑋 = ran 𝐺
43grpocl 30532 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝑌𝑋) → (𝐴𝐺𝑌) ∈ 𝑋)
543com23 1126 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑌𝑋𝐴𝑋) → (𝐴𝐺𝑌) ∈ 𝑋)
653expb 1120 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → (𝐴𝐺𝑌) ∈ 𝑋)
71, 2, 63jca 1128 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → (𝐴𝑋𝑌𝑋 ∧ (𝐴𝐺𝑌) ∈ 𝑋))
83grpoass 30535 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝑌𝑋 ∧ (𝐴𝐺𝑌) ∈ 𝑋)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))))
97, 8syldan 590 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))))
109adantr 480 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))))
11 oveq1 7455 . . . . . . 7 ((𝑌𝐺𝐴) = 𝑈 → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑈𝐺𝑌))
1211adantl 481 . . . . . 6 (((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈) → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑈𝐺𝑌))
13 simpl 482 . . . . . 6 (((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈) → (𝑈𝐺𝑌) = 𝑌)
1412, 13eqtr2d 2781 . . . . 5 (((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈) → 𝑌 = ((𝑌𝐺𝐴)𝐺𝑌))
15 id 22 . . . . . . 7 ((𝑌𝑋𝐴𝑋𝑌𝑋) → (𝑌𝑋𝐴𝑋𝑌𝑋))
16153anidm13 1420 . . . . . 6 ((𝑌𝑋𝐴𝑋) → (𝑌𝑋𝐴𝑋𝑌𝑋))
173grpoass 30535 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋𝑌𝑋)) → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑌𝐺(𝐴𝐺𝑌)))
1816, 17sylan2 592 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑌𝐺(𝐴𝐺𝑌)))
1914, 18sylan9eqr 2802 . . . 4 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → 𝑌 = (𝑌𝐺(𝐴𝐺𝑌)))
2019eqcomd 2746 . . 3 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → (𝑌𝐺(𝐴𝐺𝑌)) = 𝑌)
2120oveq2d 7464 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))) = (𝐴𝐺𝑌))
2210, 21eqtrd 2780 1 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  ran crn 5701  (class class class)co 7448  GrpOpcgr 30521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-ov 7451  df-grpo 30525
This theorem is referenced by:  grpoidinvlem3  30538
  Copyright terms: Public domain W3C validator