MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinvlem2 Structured version   Visualization version   GIF version

Theorem grpoidinvlem2 30487
Description: Lemma for grpoidinv 30490. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpoidinvlem2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺𝑌))

Proof of Theorem grpoidinvlem2
StepHypRef Expression
1 simprr 772 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → 𝐴𝑋)
2 simprl 770 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → 𝑌𝑋)
3 grpfo.1 . . . . . . . 8 𝑋 = ran 𝐺
43grpocl 30482 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝑌𝑋) → (𝐴𝐺𝑌) ∈ 𝑋)
543com23 1126 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑌𝑋𝐴𝑋) → (𝐴𝐺𝑌) ∈ 𝑋)
653expb 1120 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → (𝐴𝐺𝑌) ∈ 𝑋)
71, 2, 63jca 1128 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → (𝐴𝑋𝑌𝑋 ∧ (𝐴𝐺𝑌) ∈ 𝑋))
83grpoass 30485 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝑌𝑋 ∧ (𝐴𝐺𝑌) ∈ 𝑋)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))))
97, 8syldan 591 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))))
109adantr 480 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))))
11 oveq1 7359 . . . . . . 7 ((𝑌𝐺𝐴) = 𝑈 → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑈𝐺𝑌))
1211adantl 481 . . . . . 6 (((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈) → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑈𝐺𝑌))
13 simpl 482 . . . . . 6 (((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈) → (𝑈𝐺𝑌) = 𝑌)
1412, 13eqtr2d 2769 . . . . 5 (((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈) → 𝑌 = ((𝑌𝐺𝐴)𝐺𝑌))
15 id 22 . . . . . . 7 ((𝑌𝑋𝐴𝑋𝑌𝑋) → (𝑌𝑋𝐴𝑋𝑌𝑋))
16153anidm13 1422 . . . . . 6 ((𝑌𝑋𝐴𝑋) → (𝑌𝑋𝐴𝑋𝑌𝑋))
173grpoass 30485 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋𝑌𝑋)) → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑌𝐺(𝐴𝐺𝑌)))
1816, 17sylan2 593 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑌𝐺(𝐴𝐺𝑌)))
1914, 18sylan9eqr 2790 . . . 4 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → 𝑌 = (𝑌𝐺(𝐴𝐺𝑌)))
2019eqcomd 2739 . . 3 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → (𝑌𝐺(𝐴𝐺𝑌)) = 𝑌)
2120oveq2d 7368 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))) = (𝐴𝐺𝑌))
2210, 21eqtrd 2768 1 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  ran crn 5620  (class class class)co 7352  GrpOpcgr 30471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-ov 7355  df-grpo 30475
This theorem is referenced by:  grpoidinvlem3  30488
  Copyright terms: Public domain W3C validator