MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinvlem2 Structured version   Visualization version   GIF version

Theorem grpoidinvlem2 30524
Description: Lemma for grpoidinv 30527. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpoidinvlem2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺𝑌))

Proof of Theorem grpoidinvlem2
StepHypRef Expression
1 simprr 773 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → 𝐴𝑋)
2 simprl 771 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → 𝑌𝑋)
3 grpfo.1 . . . . . . . 8 𝑋 = ran 𝐺
43grpocl 30519 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝑌𝑋) → (𝐴𝐺𝑌) ∈ 𝑋)
543com23 1127 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑌𝑋𝐴𝑋) → (𝐴𝐺𝑌) ∈ 𝑋)
653expb 1121 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → (𝐴𝐺𝑌) ∈ 𝑋)
71, 2, 63jca 1129 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → (𝐴𝑋𝑌𝑋 ∧ (𝐴𝐺𝑌) ∈ 𝑋))
83grpoass 30522 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝑌𝑋 ∧ (𝐴𝐺𝑌) ∈ 𝑋)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))))
97, 8syldan 591 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))))
109adantr 480 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))))
11 oveq1 7438 . . . . . . 7 ((𝑌𝐺𝐴) = 𝑈 → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑈𝐺𝑌))
1211adantl 481 . . . . . 6 (((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈) → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑈𝐺𝑌))
13 simpl 482 . . . . . 6 (((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈) → (𝑈𝐺𝑌) = 𝑌)
1412, 13eqtr2d 2778 . . . . 5 (((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈) → 𝑌 = ((𝑌𝐺𝐴)𝐺𝑌))
15 id 22 . . . . . . 7 ((𝑌𝑋𝐴𝑋𝑌𝑋) → (𝑌𝑋𝐴𝑋𝑌𝑋))
16153anidm13 1422 . . . . . 6 ((𝑌𝑋𝐴𝑋) → (𝑌𝑋𝐴𝑋𝑌𝑋))
173grpoass 30522 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋𝑌𝑋)) → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑌𝐺(𝐴𝐺𝑌)))
1816, 17sylan2 593 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → ((𝑌𝐺𝐴)𝐺𝑌) = (𝑌𝐺(𝐴𝐺𝑌)))
1914, 18sylan9eqr 2799 . . . 4 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → 𝑌 = (𝑌𝐺(𝐴𝐺𝑌)))
2019eqcomd 2743 . . 3 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → (𝑌𝐺(𝐴𝐺𝑌)) = 𝑌)
2120oveq2d 7447 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → (𝐴𝐺(𝑌𝐺(𝐴𝐺𝑌))) = (𝐴𝐺𝑌))
2210, 21eqtrd 2777 1 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  ran crn 5686  (class class class)co 7431  GrpOpcgr 30508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-ov 7434  df-grpo 30512
This theorem is referenced by:  grpoidinvlem3  30525
  Copyright terms: Public domain W3C validator