![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltsubpos | Structured version Visualization version GIF version |
Description: Subtracting a positive number from another number decreases it. (Contributed by NM, 17-Nov-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
ltsubpos | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵 − 𝐴) < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltaddpos 11743 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ 𝐵 < (𝐵 + 𝐴))) | |
2 | ltsubadd 11723 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 − 𝐴) < 𝐵 ↔ 𝐵 < (𝐵 + 𝐴))) | |
3 | 2 | 3anidm13 1417 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 − 𝐴) < 𝐵 ↔ 𝐵 < (𝐵 + 𝐴))) |
4 | 3 | ancoms 457 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 − 𝐴) < 𝐵 ↔ 𝐵 < (𝐵 + 𝐴))) |
5 | 1, 4 | bitr4d 281 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵 − 𝐴) < 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2099 class class class wbr 5144 (class class class)co 7414 ℝcr 11146 0cc0 11147 + caddc 11150 < clt 11287 − cmin 11483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11289 df-mnf 11290 df-ltxr 11292 df-sub 11485 df-neg 11486 |
This theorem is referenced by: ltsubposd 11839 ltsubrp 13056 ubmelfzo 13743 ubmelm1fzo 13775 ndvdsadd 16405 prmgaplem7 17052 sinq12gt0 26530 acoscos 26916 scvxcvx 27009 crctcsh 29753 dirkercncflem1 45758 difmodm1lt 47944 |
Copyright terms: Public domain | W3C validator |