MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltsubpos Structured version   Visualization version   GIF version

Theorem ltsubpos 11746
Description: Subtracting a positive number from another number decreases it. (Contributed by NM, 17-Nov-2004.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
ltsubpos ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵𝐴) < 𝐵))

Proof of Theorem ltsubpos
StepHypRef Expression
1 ltaddpos 11744 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴𝐵 < (𝐵 + 𝐴)))
2 ltsubadd 11724 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴) < 𝐵𝐵 < (𝐵 + 𝐴)))
323anidm13 1417 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝐴) < 𝐵𝐵 < (𝐵 + 𝐴)))
43ancoms 457 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵𝐴) < 𝐵𝐵 < (𝐵 + 𝐴)))
51, 4bitr4d 281 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ (𝐵𝐴) < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098   class class class wbr 5152  (class class class)co 7426  cr 11147  0cc0 11148   + caddc 11151   < clt 11288  cmin 11484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-pnf 11290  df-mnf 11291  df-ltxr 11293  df-sub 11486  df-neg 11487
This theorem is referenced by:  ltsubposd  11840  ltsubrp  13052  ubmelfzo  13739  ubmelm1fzo  13770  ndvdsadd  16396  prmgaplem7  17035  sinq12gt0  26470  acoscos  26853  scvxcvx  26946  crctcsh  29663  dirkercncflem1  45538  difmodm1lt  47691
  Copyright terms: Public domain W3C validator